
SegDIP: The Unreasonable Effectiveness of
Randomly-Initialized CNNs for Interactive Segmentation

Anagh Malik1, Shuaifeng Zhi1, Marwan Taher1, Ronald Clark2, Andrew Davison1

1Dyson Robotics Lab at Imperial College London
2Department of Computing, Imperial College London
{anagh.malik18, s.zhi17, m.taher, ronald.clark,

a.davison}@imperial.ac.uk

Abstract
We present a simple lightweight framework for in-
teractive real time semantic segmentation without
prior data based on the Deep Image Prior [21]. For
each image we train a single convolutional encoder-
decoder network mapping from input coordinates
to RGB values and semantic classes. We find the
paradigm of simultaneous reconstruction and seg-
mentation to be very powerful, the proposed model
can interpolate from just a few user-provided an-
notations, which we analyze utilizing ideas from
the Neural Tangent Kernel literature. Our key con-
tribution is a Temporal Consistency Loss (TCL),
which applies a dense loss at each iteration of the
training procedure guided by the last one. We im-
plement many types of user interactions such as
clicks, bounding boxes and strokes. We further
show some promising experiments for real time
tracking,by switching between the subsequent RGB
frames from a video. With only sparse annotations
on the first frame of a video, we are able to track
objects through the whole video.

1 Introduction
Semantic segmentation is one of the fundamental
problems in the field of computer vision and ma-
chine learning. Assigning a label to each pixel of
an image is one of the important steps in building
complex robotic systems such as driverless cars,
human-friendly robots, robot-assisted surgery and
intelligent military systems.

The simplest problem definition for semantic

segmentation is pixel-wise labelling. However this
problem is fundamentally ill-defined, since these
labels are non-unique e.g. we could label pixels of
a brick in a building as both "brick" and "building".
None of these answers are inherently wrong and
the preferred answer undoubtedly depends on the
application.

This is why typically for semantic segmentation
we train deep neural network on large datasets,
which pre-define the different types of classes. How-
ever, not only is there a high cost to creating these
training datasets, but at test time we are limited to
the classes we have previously seen. Instead, we
explore an approach that allows for high-quality
segmentation with minimal human interaction be-
cause the user monitors the semantic map as it
updates in real-time and clicks only as needed to
correct it. The smoothness properties of the CNN
mean that regions and objects are coherently repre-
sented, and can frequently be labelled with only a
few clicks. Sometimes, not even a single click is re-
quired as the correct properties will be transferred
from already labelled parts of the scene.

Our contributions are as follows:

• We propose an architecture for real-time in-
teractive semantic segmentation without prior
data, a setup which has not been explored be-
fore.

• We demonstrate the powerful ability of the
DIP architecture to predict semantics in an
image by interpolating from just a few human
provided clicks, without any explicit prior to
do so. This is analyzed under the lens of the
Neural Tangent Kernel.

1

• We propose a Temporal Consistency Loss,
which takes a big step in helping our setup
become a tool for large scale segmentation.

• We present the further capabilities of our setup
to perform tracking in a video.

2 Related Work

2.1 Semantic Segmentation
Most standard semantic segmentation systems are
based on training on densly labelled datasets with-
out any further interaction during test time, for
example U-Net [17] or DeepLabV3 [6]. Such se-
tups firstly require heavy resources for the training
phase, but in addition they are inflexible to the ad-
dition of new unseen classes or refinement during
test time.

There have been methods aiming to alleviate this
issue. ScribbleSup [13] proposes training a network
on a dataset labelled only with scribbles. However
this method again suffers from the issue of being
inflexible to the addition of unseen classes at test
time, due to the reliance on a training dataset. This
is an issue which is seemingly overcome by both
Polygon-RNN [5] and Polygon-RNN++ [1], which
are based on recurrent architectures with a human-
in-the-loop who can adjust the segmentation at
each step. However this method is again based
on expensive pretraining on a dataset. We argue
that one should be able to do real time semantic
segmentation without extensive pretraining just by
analyzing the self similarity in a single image.

2.2 Single Image Based Learning
Recently, several deep internal learning methods
have been proposed and achieve remarkable perfor-
mance that is comparable to that of external meth-
ods trained on large-scale datasets. Methods have
been developed to solve superresolution [19] [21]
[4], restoration [19] [14] reflection removal [22] or
deblurring [16].

All these methods are predated by classical inter-
nal learning methods, which have proved internal
approaches can be successfully applied to several
image manipulation tasks such as super-resolution
[9] [10], dehazing [3] or texture synthesis [7].

2.3 Single Image Based Segmentation
There has also been some work proposed for seg-
mentation. Double-DIP [8] solves the issue of fore-
ground/background segmentation using two Deep
Image Prior architectures and a saliency initializa-
tion, we qualitatively compare against this work.
However it’s important to mention that despite re-
quiring some interaction our setup allows for flex-
ible multi class segmentation as opposed to being
limited to two fixedclasses. Furthermore we require
no saliency initialization either.

There have also been classical internal methods
for segmentation. Bagon et al. [2] proposed an in-
formation theory method to define a good image
segment and based on that segment an image. Grab-
Cut [18] proposed a foreground/background seg-
mentation method based on graph cuts by using a
user provided bounding box, specifying the region
the foreground is in. We again use this work as a
qualitative comparison baseline, however we again
stress our setup allows for flexible multi class seg-
mentation as opposed to being limited to two fixed
classes.

3 Method
3.1 Deep Image Prior
Let’s first revisit Deep Image Prior. As a general
framework the paper treats a neural network 𝑓𝜃
with parameters 𝜃 as a parametrization 𝑥 = 𝑓𝜃(𝑧)
by mapping a fixed code 𝑧 ∈ R𝐻×𝑊×𝐿 to the image
𝑥 ∈ R𝐻×𝑊×3, where 𝐻 and 𝑊 are the height and
width of the image.

With this general idea they are able to solve tasks
such as denoising by taking the output of their
network after utilizing early stopping to avoid over-
fitting and minimizing the objective:

min
𝜃

| |𝑥∗ − 𝑥 | |2

where 𝑥∗ = 𝑓𝜃. A similar setup is used for inpaint-
ing, by applying a binary mask 𝑀 ∈ {0, 1}𝐻×𝑊 rep-
resenting the filled region and solving the objective:

min
𝜃

| |𝑥∗ × 𝑀 − 𝑥 × 𝑀 | |2

where 𝑥∗ = 𝑓𝜃. The output of the network often
predicts coherent textures on masked out areas.

2

The function approximation 𝑓 in both these cases
is taken to be a convolutional neural network with
the parameters 𝜃 representing the weights and bias
in the filers of the network. The code 𝑧 varies across
tasks, but they are either meshgrid i.e. a grid of
xy coordinates or random noise. For meshgrid we
have 𝐿 = 2, whereas for noise 𝐿 can be arbitrary.

3.2 Basic Setup
We augment this setup by first assuming we have
sparse semantic supervision for the image. More
specifically we have both a mask 𝑀 ∈ {0, 1}𝐻×𝑊 ,
which masks out the pixels that don’t have a
ground truth annotation and a target segmenta-
tion 𝑠 ∈ {0, 1}𝐻×𝑊×𝑁 , which contains the ground
truth labels for the appropriate pixels contained
in the mask 𝑀, where 𝑁 represents the maximum
number of classes we want to segment the image
into. We then make the network map from the code
𝑧 ∈ R𝐻×𝑊×𝐿 to both the image 𝑥 ∈ R𝐻×𝑊×3 and the
segmentation 𝑠 ∈ R𝐻×𝑊×𝑁 only for the annotated
pixels according to the mask 𝑀 i.e. we minimize
the objective:

min
𝜃

| |𝑥∗ − 𝑥 | |2 + ||𝑠∗ × 𝑀 − 𝑠 × 𝑀 | |2

where 𝑥∗ , 𝑠∗ = 𝑓𝜃(𝑧). This setup can be used for
interpolating a few pre-defined annotations or for
label denoising. However we further augment the
system by real-time training and supplying clicks
in the loop. In this case our objective at training
timestep t is:

min
𝜃

| |𝑥∗ − 𝑥 | |2 + ||𝑠∗ × 𝑀𝑡 − 𝑠𝑡 × 𝑀𝑡 | |2

where 𝑠𝑡 represents the target with the ground-
truth annotations supplied till timestep 𝑡 and 𝑀𝑡 is
the binary mask containing only those pixels.

With this setup we can perform real-time seman-
tic segmentation. We, however, find that this setup
can sometimes degrade the segmentation of differ-
ent areas with the addition of more annotations.
This is why we introduce a novel Temporal Consis-
tency Loss.

3.3 Temporal Consistency Loss
Let 𝑄 = {𝑞𝑚}𝑚 be the set of pixels in the image
given labels {𝑦𝑚}𝑚 (probability vectors) respec-

tively through an interaction (click, bounding box
or stroke). Let 𝑆𝑘 be the segmentation output of
the network on the k-th training iteration of dimen-
sions 𝐻×𝑊×𝑁 , where 𝐻 is the height of the image,
𝑊 is the width of the image and 𝑁 is the number
of classes (each 𝑆𝑘

𝑖𝑗𝑙
is a probability). We define an

augmented 𝐻 ×𝑊 × 𝑁 dimension matrix 𝑇 𝑘 as:

𝑇 𝑘
𝑖𝑗 =

{
𝑦𝑚 , if (𝑖 , 𝑗) = 𝑞𝑚

𝑆𝑘
𝑖𝑗
, if (𝑖 , 𝑗) ∉ 𝑄

This is the current model predictions combined
with the ground truth provided by the interactions.
Furthermore let 𝑀𝑘+1 be a matrix of dimensions
𝐻 ×𝑊 , which has values between 0 and 1 of per
pixel weighting.

Then at iteration (k+1), we define:

𝐿𝑘+1 =
∑
𝑖 , 𝑗

BCE(𝑆𝑘+1
𝑖 𝑗 , 𝑇 𝑘

𝑖𝑗) ∗ 𝑀
𝑘+1
𝑖 𝑗

where BCE is the binary cross entropy loss.
Where we set:

𝑀𝑘+1
𝑖 𝑗 =

{
1, if (𝑖 , 𝑗) ∈ 𝑄

𝜆, if (𝑖 , 𝑗) ∉ 𝑄

where 𝜆 << 1. We then at iteration (𝑘 + 1) jointly
minimize:

min
𝜃

| |𝑥∗ − 𝑥 | |2 + 𝐿𝑘+1

only if there are some annotations in the image,
otherwise, we only minimize the reconstruction
loss, given by:

min
𝜃

| |𝑥∗ − 𝑥 | |2

With this setup we can segment many difficult
images.

3.4 Tracking
Let {𝑥𝑡}𝑡 be a set of frames from a video, where 𝑥𝑡 ∈
R𝐻×𝑊×3. For tracking in a video on the first frame
we train the exact same setup as with the Temporal
Consistency Loss, allowing a user to annotate the
frame in real time, i.e. if there are annotations in
the frame we are minimizing:

3

128

224

112
56 28

128

128

128

BN+LReLu

Input Output User input

Gradient descent

-

Update weights

Figure 1: SegDIP architecture.

min
𝜃

| |𝑥∗ − 𝑥1 | |2 + 𝐿𝑘+1

However now we allow the user to switch the
frame of the video to the next one, retraining the
reconstruction loss towards the new image target.
In this way if the user switched the loss towards
the frame 𝑡 before timestep (𝑘 + 1) then we are
minimizing:

min
𝜃

| |𝑥∗ − 𝑥0 | |2 + 𝐿𝑘+1

however it’s important to note that we reinstan-
tiate the aforementioned annotations 𝑄 for each
frame, hence we have:

𝐿𝑘+1 =
∑
𝑖 , 𝑗

BCE(𝑆𝑘+1
𝑖 𝑗 , 𝑇 𝑘

𝑖𝑗) ∗ 𝑀
𝑘+1
𝑖 𝑗

where 𝑀𝑘+1
𝑖 𝑗 = 𝜆. This forces also a temporal

consistency across different frames on the video.
We note that this setup let’s us track the objects we
annotated only in the first frame across the whole
video.

3.5 Implementation
We train the image reconstruction network for each
image from scratch. In all our experiments we use
an encoder-decoder network. The encoder has 4
layers, then we have a 3 layer decoder with 2 convo-
lutional heads on top of that, one of which maps to
the image and the other to the segmentation. Each
convolutional layer has 128 filters and LeakyRELU
activations. Between each of these layers we per-
form Batch Normalization [11], which we find to
speed up the training process. For the input code

𝑧 we use meshgrid i.e. xy coordinates, we find that
this applies a smooth prior on the segmentation.
Replacing meshgrid with random noise increases
the capacity of the network to the point that it over-
fits particular annotations. To allow for a smooth
training process and avoid jittering with the ad-
dition of new clicks we clip the gradients. The
whole setup is trained with AMSGrad [15]. We
downsample through strides, but upsample with
nearest-neighbour method.

For the setup with temporal consistency we use
𝜆 = 0.001. We train the network real-time with a
Nvidia GeForce RTX 3080 GPU,which takes around
1 min depending on the image. We usually down-
scale images to have both dimensions in the size to
be less than 300 pixels.

3.6 Training and annotating procedure

Before starting to annotate we usually wait for the
image reconstruction to converge to the point that
various objects in the image are recognizable. to
start annotating a user has to first specify the class
the annotation will be from, then he can use one of
3 types of annotations:

• Clicks - with which one can supervise one pixel

• Stroke - with which a user can more easily
supervise pixels on one single line

• Bounding Box - a user can draw a bounding
dox, with which he supervises all the pixels
inside it

4

Original
Image Ours Ours with

Interactions Double DIP GrabCut

Figure 2: Comparison against Double-DIP [8] and Grabcut [18]. System without temporal consistency
and with only click annotations. The number of clicks needed for us for the images is a) 2, b) 1, c) 3, d) 1,
e) 4, f) 5, g) 6, h) 4, i) 7.

5

4 Results

4.1 Binary and Multi-Class Segmenta-
tion Without Temporal Consistency

We can first perform experiments without temporal
consistency loss for 2 class segmentation on simple
images with just clicking annotations (each click
contains a single pixel). Even though this is not
what we think is the key advantage of our system,
it shows how well our architecture can interpolate
from extremely sparse annotations. In Figure 2 we
can see examples of this, where for each image we
use at most 8 clicks, but still manage to produce a
reasonable segmentation.

We can further see that on the qualitative exam-
ples our system outperforms GrabCut. We presume
this is because of the very high sensitivity of Grab-
Cut to the bounding box, for images with large
foreground areas (with objects of interests) we see
the performance is significantly worse.

Moreover we can see comparable results to
Double-DIP despite not using any explicit priors for
segmentation such as saliency. However we also ex-
ceed their performance on images with unclear fore-
ground/background segmentation like the broom
oron high frequency images suchas the ferris wheel.
This is due to the flexibility of providing supervi-
sion in our system and because the segmentation
is being performed from the same representation
as the reconstruction, thus our system is able to
see smaller details in images and recognize tiny
patches.

Whats especially sets our system apart is the ca-
pability to perform multi class segmentation. This
is also something both Double-DIP and Grabcut
aren’t able to perform. Results for this setup can
be seen in Figure 3, where we perform multi-class
segmentation from just a few user-provided clicks.
We can again notice that for each of these image we
need less than 5 clicks per class to produce reason-
able segmentation.

However the images we have shown so far are
limited to simple orsmooth textures. We have found
for images with more complicated textures the seg-
mentation quality sometimes degrades over-time,
when a previously correctly predicted pixel is at-
tributed the wrong class after the addition of more
annotations. This in turns means we need a lot more
annotations to keep correcting previously correctly

Original image Our segmentation Clicks # of
clicks

4

12

13

8

Figure 3: Segmentation from SegDIP on simple
multi class images. All segmentation done in real-
time with only clicking annotations, where click
size is one pixel.

labelled pixels. This effect can also be seen in Fig-
ure 4. Where despite there being multiple annota-
tions on the treeline the network gets confused by
the highly textured leafs. As we can see on Figure 4
the Temporal Consistency Loss mitigates this issue.

4.2 Multi-Class Segmentation With
Temporal Consistency

We can see further results on Figure 3, where we
can segment complicated images with as little as
18 human provided strokes. However even more
important is that for all but one of these images
we are supervising less than 1% of the pixels in
the image. Especially impressive are the results
for highly textured images as the image with the
car or the image with the elephant. Thus we can
reach the conclusion that our system is very close
to being a very efficient labelling tool. With this
performance one could imagine the application of
our setup for dataset creation. However it’s also
important to mention that the TCL suppresses label
propagation slightly, hence why for simple images

6

Original image Without TCL With TCL

Figure 4: SegDIP for 3 class segmentation with and
without the Temporal Consistency Loss (TCL). The
number of user annotations for these images is a)
13, b) 6. Both these images were not segmented
interactively, but run with pre-recorded clicks.

we might need more annotations than without it,
however this issue is negligible in many real-world
segmentation tasks.

4.3 Tracking
We can also see perform video tracking experiments
on two simple scenes. We switch the frames ev-
ery some iterations (as described in the Methods
section). For each video we only provide annota-
tions in the first frame. From Figure 6 we can see
that SegDIP performs well on these simple tracking
problems, it doesn’t get pixel perfect results, how-
ever it is able to generally track the shape as it moves
through the scene.

Our setup also allows fixing errors during the
training in further frames, however we concentrate
on only showing tracking abilities in these experi-
ments.

5 Analysis
One can ask, why does this even work? We can fur-
ther analyze the reason for the performance of the
model, by studying the kernel function imposed by
the network itself. In this section, we thus consider
only our network trained with a reconstruction loss,
without any interaction. We can thus analyze what

Original Image
Predicted

Segmentation
with annotations

Annotations

scribbles pixel (%)

3 0.35

8 0.41

13 0.77

18 1.12

4 0.37

10 0.81

Figure 5: SegDIP with Temporal Consistency Loss
for multi-class segmentation trained in real-time
with a user. Provided are the number of scribbles
needed to segment the image in the particular ex-
amples and the percentage of pixels annotated by
these scribbles. All but one of these images require
less than 1% of pixel annotations.

kind of a prior (kernel) is imposed by our network
and how this effects the segmentation.

For Gradient Descent and with the infinite depth
assumption for each layer the kernel is constant.
However this changes when we have a rather small

7

Frame 1
(with annotations) Frame 6 Frame 11 Frame 16 Frame 21 Frame 26

Figure 6: Tracking results for with SegDIP. We can see that annotations given on the first frame and no
other annotations on the subsequent ones. Even with videos longer than 20 frames we can see the the
inter-frame consistency remains.

depth at each layer and when we use Adam opti-
mizer [12]. At training iteration 𝑡, Adam optimizer
updates the weights according to:

𝜃𝑡+1 = 𝜃𝑡 − �̃�𝐻𝑡 𝛿ℒ
𝛿𝜃

(
𝜃𝑡
)
+ 𝛽1

(
𝜃𝑡 − 𝜃𝑡−1

)
where 𝜃 are the weights of the network 𝛽1 is

a hyperparameter controlling the momentum and
learning rate, �̃� = 𝜂 (1 − 𝛽1) and 𝐻𝑡 is a diagonal
matrix containing the inverse of a running average
of the squared value of the gradients, computed
using the hyperparameter 𝛽2. The network outputs
are then updated according to:

𝑧𝑡+1 = 𝑧𝑡 + �̃�Θ̃𝑡
𝐿

(
𝑦 − 𝑧𝑡

)
+ 𝛽1

(
𝑧𝑡 − 𝑧𝑡−1

)
where for simplicity we wrote 𝑧 = 𝑥∗ and where

Θ̃𝑡 is the resulting gram matrix, which is adapted
at each iteration, according to the rule [20]:

Θ̃𝑡 =
𝛿𝑥∗

𝛿𝜃
𝐻𝑡

(
𝛿𝑥∗

𝛿𝜃

)⊤�����
𝜃=𝜃𝑡

where 𝑥∗ = 𝑓𝜃(𝑧). The matrix𝐻 𝑘 imposes a metric
in the weight space which differs from the standard
Euclidean metric of Gradient Descent.

The calculation for the whole gram matrix is very
expensive and scales quaternarily with the number
of pixels. Thus we will instead pick a single pixel
and find the affinities with other pixels as per the
aforementioned rule. It’s important to note that
the kernel is not stationary and changes over the
training.

In Figure 7 we can see how the gram matrix for a
given pixel changes as the training progresses. We
can see that at the start of the training high affin-
ity areas are vaguely clustered around the pixel
in question. However these high affinity areas be-
come more semantically meaningful as the training
continues. We can also see how the affinity map be-
comes more concentrated around specific pixels
with more iterations, this is visible in the bird ex-
ample and one of the living room examples. This in
turn also means a higher intensity on some small
specific areas.

The kernel map intuitively predicts how the la-
bels will propagate for a single click in that area, by

8

Input image with
given pixel

Gram matrix visualization for pixel
10 iterations 510 iterations 1010 iterations

Figure 7: Gram matrix visualized for specific pixels in an image based on the Neural Tangent Kernel at
different iterations of the network. The reference pixel given in the first columns. Brighter regions have
higher affinity.

9

denoting the similarity between the pixels. Hence
it also makes sense that we would want to start
clicking before the network overfits to the image
(iteration 1010).

It’s interesting to notice that the kernel seems to
be doing more than just simply colour based in-
tensity mapping. This is especially visible on the
living room picture, where we visualize the simi-
larities for a pixel on the wall. There are parts of
wall separated by the furniture that isn’t attributed
a high affinity despite having a very similar colour
to the highlighted pixel. We can thus conclude that
our network imposes a similarity based not only on
colours, but also the geometry of the image itself.

6 Conclusions

We have shown that online, image-specific training
of a compact CNN model which jointly encodes
appearance and semantics allows ultra-sparse inter-
active labelling to produce accurate dense seman-
tic segmentation. Despite promising results, our
system’s label propagation mechanism works well
mainly for proximal regions and/or those sharing
similar colour. However it must be mentioned that
the setup we are exploring is extremely constrained
and apart from colour and proximity, there is not
much more information that can be found through
a single image. Nonetheless we expect a deeper
understanding and study of network architecture
and it’s biases would give us a lot more insight into
engineering further segmentation priors into the
network itself e.g. through architectural changes.

We are especially astonished by the video track-
ing results and even though they are still far from
pixel perfect tracking, we believe the results have a
lot of potential for improvement. Some furtherareas
of exploration could include incorporating optical
flow information into the network or helping the
network converge quicker to the new frame.

7 Acknowledgements

Research presented here has been supported by
Dyson Technology Ltd. We thank Kentaro Wada,
Edgar Sucar, Andre Mouton and Shikun Liu for
fruitful discussions.

References
[1] D. Acuna, H. Ling, A. Kar, and S. Fidler. Ef-

ficient interactive annotation of segmentation
datasets with polygon-rnn++. 2018.

[2] S. Bagon, O. Boiman, and M. Irani. What is a
good image segment? a unified approach to
segment extraction. In ECCV, 2008.

[3] Y. Bahat and M. Irani. Blind dehazing using
internal patch recurrence. In 2016 IEEE Interna-
tional Conference on Computational Photography
(ICCP), pages 1–9, 2016.

[4] S. Bell-Kligler, A. Shocher, and M. Irani. Blind
super-resolution kernel estimation using an
internal-gan, 2020.

[5] L. Castrejón. Polyrnn : Polygon-based instance
segmentation with recurrent neural networks.
2016.

[6] L.-C. Chen, G. Papandreou, F. Schroff, and
H. Adam. Rethinking atrous convolution for
semantic image segmentation, 2017.

[7] A. Efros and T. Leung. Texture synthesis by
non-parametric sampling. In Proceedings of the
Seventh IEEE International Conference on Com-
puter Vision, volume 2, pages 1033–1038 vol.2,
1999.

[8] Y. Gandelsman, A. Shocher, and M. Irani.
"double-dip": Unsupervised image decompo-
sition via coupled deep-image-priors, 2018.

[9] D. Glasner, S. Bagon, and M. Irani. Super-
resolution from a single image. pages 349 –
356, 11 2009.

[10] K. He and J. Sun. Statistics of patch offsets for
image completion. pages 16–29, 10 2012.

[11] S. Ioffe and C. Szegedy. Batch normalization:
Accelerating deep network training by reduc-
ing internal covariate shift, 2015.

[12] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization, 2017.

[13] D. Lin, J. Dai, J. Jia, K. He, and J. Sun. Scrib-
blesup: Scribble-supervised convolutional net-
works for semantic segmentation, 2016.

10

[14] I. D. Mastan and S. Raman. Dcil: Deep con-
textual internal learning for image restoration
and image retargeting, 2019.

[15] S. J. Reddi, S. Kale, and S. Kumar. On the
convergence of adam and beyond, 2019.

[16] D. Ren, K. Zhang, Q. Wang, Q. Hu, and W. Zuo.
Neural blind deconvolution using deep priors,
2020.

[17] O. Ronneberger, P. Fischer, and T. Brox. U-net:
Convolutional networks for biomedical image
segmentation, 2015.

[18] C. Rother, V. Kolmogorov, and A. Blake. "grab-
cut": Interactive foreground extraction us-
ing iterated graph cuts. ACM Trans. Graph.,
23(3):309–314, aug 2004.

[19] A. Shocher,N. Cohen,and M. Irani. "zero-shot"
super-resolution using deep internal learning,
2017.

[20] J. Tachella, J. Tang, and M. Davies. The neural
tangent link between cnn denoisers and non-
local filters, 2020.

[21] D. Ulyanov, A. Vedaldi, and V. Lempitsky.
Deep image prior. International Journal of Com-
puter Vision, 128(7):1867–1888, Mar 2020.

[22] Y. Yin, Q. Fan, D. Chen, Y. Wang, A. Aviles-
Rivero, R. Li, C.-B. Schnlieb, D. Lischinski, and
B. Chen. Deep reflection prior, 2020.

11

	Introduction
	Related Work
	Semantic Segmentation
	Single Image Based Learning
	Single Image Based Segmentation

	Method
	Deep Image Prior
	Basic Setup
	Temporal Consistency Loss
	Tracking
	Implementation
	Training and annotating procedure

	Results
	Binary and Multi-Class Segmentation Without Temporal Consistency
	Multi-Class Segmentation With Temporal Consistency
	Tracking

	Analysis
	Conclusions
	Acknowledgements

