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Abstract

Image and scene segmentation is one of the central tasks of Computer Vision. A segmentation

could be used as an efficient representation for an early vision system, which could then

be applied to various downstream tasks. A good segmentation map might be useful for

applications in autonomous driving or robotic manipulation.

Most segmentation algorithms learn useful features from large labelled datasets. However in

many domains such as medical imaging or astrophysics ground truth segmentations might

be unavailable. This is where self-supervised segmentation comes in, where we try to learn

features which lend themselves well to segmentation, without any labelled datasets.

Neural Representations are an emerging method to represent signals, by parameterizing them

with a neural network. This representation lends itself well to the task of self-supervised

segmentation, due to the compressive and hierarchical nature of neural networks.

In this thesis we explore the use of Neural Representations for efficient self-supervised seg-

mentation without any pretraining. We first introduce SegDIP, a method for the well-defined

problem of interactive segmentation using a Convolutional Neural Field. We develop dif-

ferent kinds of user interactions, which make the process of interactive segmentation sim-

pler. We analyze the properties of the network using the Neural Tangent Kernel literature.

Finally we show some applications of our method for conditional image generation and

semi-supervised video tracking.

We then introduce a method for self-supervised segmentation, making use of Neural Repre-

sentations to discover semantically meaningful contours, which are then used for producing

a segmentation mask. Our method, inspired by the work done in SegDIP, uses a multi-

head self distillation setup to ensure agreement between multiple segmentation hypotheses,

which then help guide our results for the final contours.
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Chapter 1

Background & Introduction

It is surprising how much information a human can deduce about a scene from just a glance

of it. We can recognize compositional information, estimate material properties or develop

partial understanding of the occluded objects. One of the central aspects to our scene

understanding is the ability to separate objects, for example I can perfectly point out where

the paper in front of me ends and the desk starts.

This problem in Computer Vision is called segmentation. The definition of image segmenta-

tion is as simple as it gets - image segmentation is the task of assigning a discrete label to

each pixel in the image. This assignment is meant to separate an image into regions, which

should be representing physical scene properties (like objects or object parts), useful for any

other task down the line.

However there is a fundamental problem in this task definition, we do not know beforehand

what the labels are. If we have an image of a human, should his fingers be separate objects?

Should his nose be a separate object? Are they perhaps just a part of the bigger object of

the human? As David Marr says in his influential book on vision [Mar82], it is well neigh

impossible to formulate precisely what the exact goals of segmentation are.

However even assuming we manage to fix this definition issue, there are even more intricacies

to the problem than we realize. The global understanding required for segmentation is

6
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(a) Recognition issue. How do we know the
mirror is not a window? It comes from our
analysis of the whole image, by deducting
the scene is set in a bathroom.

(b) Segmentation issue. How do we tell where the
coat ends and background begins (red arrow)? Even
humans can not do it exactly, but we can probably do
pretty good job just by using the idea of continuity in
the shape of the coat and analyzing where the shirt
ends.

Figure 1.1: Images difficult for semantic segmentation.

unparalleled. The problem becomes even more difficult when you realize that simply seeing

the object you have at hand is oftentimes not enough. Many times you have to also perceive

and understand the surroundings. For example looking at Figure 1.1a, if I have an image of

a bathroom how do I know a mirror on the wall is not a window? Or in Figure 1.1b, how do

I tell where the background begins and the coat ends?

The hierarchical scene understanding humans have developed, which allows us to recognize

and separate objects visually in an open set manner is unparalleled. Nonetheless many brave

Computer Vision researchers have attempted to solve this problem or at least contribute to

solving it.

Before we delve into some of the work done in this field, it is important to mention a slight

nuance in the problem definition. The label set might not explicitly represent any objects a

priori, in this case we are dealing with the problem of segmentation. However we might also

be simultaneously solving the problem of segmentation and object recognition i.e. when the

labels have objects associated with them a priori. This problem is called semantic segmentation.
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1.1 Early days of segmentation

Edge detection. Prior to tackling the problem of segmentation, many researchers concerned

themselves with edge detection. The idea behind edge detection is to find sharp changes

in an image. The hope is that these changes in the image are caused by changes in scene

properties like depth or material, which then correspond to object boundaries.1

Leo Hodes in 1961 [Hod61] did some of the earliest work on detecting edges in line drawings.2

However Lawrence Roberts in 1963 did most influential early work in this space [Rob63]. He

introduced what is known at the Roberts cross operator. Given a grayscale image, which we

define by its pixels 𝑥𝑖 𝑗 ∈ R≥0, we define the image derivatives as 𝑧𝑖 𝑗 ∈ R≥0:

𝑦𝑖 , 𝑗 =
√
𝑥𝑖 , 𝑗 (1.1)

𝑧𝑖 , 𝑗 =

√(
𝑦𝑖 , 𝑗 − 𝑦𝑖+1, 𝑗+1

)2 +
(
𝑦𝑖+1, 𝑗 − 𝑦𝑖 , 𝑗+1

)2 (1.2)

More commonly we describe the filtering operation as magnitude of the vector resulting

from application (convolution with) of the two kernels:


+1 0

0 −1

 and


0 +1

−1 0


After recognizing points with a high gradient value, Roberts in his work intended to connect

these dots with lines. 3D models were then fitted to these line drawings, to do tasks such as

novel view synthesis (at least a novel view of the edges). We can see that the filter is mainly

equipped to recognize diagonal changes in the image.

Early work on edges continued and in 1968 during a talk Irwin Sobel introduced the Sobel

filter [Sob14]. It is calculated as the magnitude of the vector after applying the following two

1These days object boundaries are more commonly referred to as contours and edges are just supposed to
indicate local changes in images.

2It is not easy to find the original source. Roberts refers to the work in his thesis.
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kernels: 
+1 0 −1

+2 0 −2

+1 0 −1


and


+1 +2 +1

0 0 0

−1 −2 −1


The filter is less prone to noise, but more expensive to use.

We would not be able to end our discussion on classical edge detectors without mentioning

Canny [Can86], introduced by John Canny in 1986. Canny starts off its edge detection by

first smoothing the image with a Gaussian filter. This is to remove noise from the image and

to avoid detecting very high frequency patterns. Then a filtering operation is applied (like

Roberts or Sobel), to find the edges. After that, Canny performs non-maximal suppression,

which is an operation that calculates gradient directions to thin out the edges (along them).

The next step is to bin all the edges into 3 categories, "edge", "possible edge" and "not edge",

using pre-determined thresholds on the gradient maps. Finally hysteresis is performed,

the algorithm goes along "sure" edges and if it crosses a "possible edge" during its path,

then those pixels are considered "sure" edges as well. Canny is considered one of the most

important edge detectors, sill widely used today.

The results from all three edge detectors can be seen in Figure 1.2. The usefulness of edges or

contours comes from them being label agnostic i.e. if we have multiple edge representations

they already live in the same domain, for example 0 represents no edge, 1 represents edge

etc. This is as opposed to segmentation, which have an unknown domain (number of labels,

if semantic then numbering of those classes). It is important to keep in mind that it is not

obvious how to represent semantic classed with edges.

Edge detection methods will make a return later in our work and overview (disguised as

contours), however we might want to return to the problem of direct region detection.

Direct region detection. We have discussed some early edge detection work, however this

is of course not a necessary step to go to segmentation. In his 1968 thesis [Guz68], Adolfo

Guzman found a way to use vertices in images to isolate out separate objects. This work
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image Roberts 
cross

Sobel 
filter

Canny

Figure 1.2: Results of operation of different edge detection methods.

marked a slight change towards a trend of recognizing multiple regions from images.

It was only in 1971 [MP71] that Minsky and Papert introduced the first method for seg-

mentation on grayscale images without an intermediate representations of edges or vertices.

Their method relied on finding regions, which were constructed of unions of squares whose

corners have similar grayscale values.

Many other methods were developed in the 1970s. The 1981 review [FM81] points out the

two leading trends. The first one was characteristic feature thresholding and clustering based

segmentation [WNR74], [HD75], [SDR76]. These methods intend on first describing pixels

through some features i.e. aggregating local brightness, texture cues etc. Then by simple

thresholding on these features they are able to bin the pixels into separate classes. The second

major trend the review paper describes are region merging and splitting [JMB76], [GW74a],

[GW74b]. These are iterative algorithms often known as "region-growing" algorithms, which

refine their region predictions.

Up until this point the segmentation methods were largely "local", and analyzed local image

cues to group regions together, without defining or optimizing any global objectives.
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In 1980s the dominating techniques relied on Markov Random Fields (MRF) [GG84], which

are able to rely on global objectives of the image as opposed to local feature thresholding.

In short for MRF based techniques, you define a probability measure on the labelling space

which follows the Gibbs distribution. Given features for each pixel, you can then solve the

labelling by MAP estimate. Such an optimization framework setup leads to more "global"

understanding of the image due to solving a simultaneous objective for the whole image.

1.2 Classical methods for segmentation

With Computer Vision becoming more popular3, the late 1990s and early 2000s saw a major

boom in segmentation algorithms. We will not provide a comprehensive review here of those,

but we will cover some of the more important ones, which will also serve as benchmarks for

some of the work covered in this thesis.

Normalized Cuts. Normalized Cuts were introduced by Shi and Malik in 1998 [SM00] 4. In

normalized cuts we treat the segmentation problem as a graph cut problem. We are given

a fully-connected weighted graph, where the nodes represent the pixels and weights 𝑤(𝑎, 𝑏)

represent the similarity between any two pixels 𝑎 and 𝑏. Given two groups of pixels 𝐴 and

𝐵, we can define the cost of a cut (separating them as classes) between them as:

cut(𝐴, 𝐵) =
∑

𝑢∈𝐴,𝑣∈𝐵
𝑤(𝑢, 𝑣)

Then given n classes the objective is to cut the graph (along the edges) in such a way as to

minimize the cost of all cuts (sum of weights between each pixel in any two separate classes).

Of course a cheaper cut overall is to separate the image into some very small groups, this is

where the word normalized comes in. We can calculate a normalization constant as:

3The 70s and 80s are considered AI winter years. This is definitely visible in the number of breakthrough
methods during these times as compared to late 90s and early 2000s.

4This citation is their follow up journal entry from 2000, where specifically build on the older work.



12 Chapter 1. Background & Introduction

Mean shift-segmentation

Normalized Cuts

Efficient Graph Based Segmentation

Figure 1.3: Results of operation of different unsupervised segmentation methods. Each
method is run with three separate parameter settings. Figure redacted from [Pan08].
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assoc(𝐴,𝑉) =
∑

𝑢∈𝐴,𝑡∈𝑉
𝑤(𝑢, 𝑡)

where V is the whole image. Then we can calculate the normalized cost as:

Ncut(𝐴, 𝐵) = cut(𝐴, 𝐵)
assoc(𝐴,𝑉) +

cut(𝐴, 𝐵)
assoc(𝐵,𝑉)

The objective now would be normalized and hence not biased to smaller classes. It would

however be biased to equal sized classes, hence all classes would get more or less equal sized

chunks.

The way the cut is calculated (objective minimzed) is by framing the problem as a linear

algebra one, the problem can be posed as an eigenvector solving problem.

The algorithm is really quite flexible, since the weights can be defined as any sort of affinity.

In the original paper for grayscale images a combination (exponential for affinity) distance

of pixel intensities and coordinate distance is used. These ideas have been extended to

soft segments by spectral matting using a matting affinity matrix [LRAL07] and to semantic

spectral matting using features from a network trained for semantic segmentation [AOP+18].

There is an obvious issue in the formulation of the graph problem, it is highly inefficient.

Calculating this huge affinity matrix is not very feasible and follow up work cited, recognizes

this and uses superpixels as chunks to find affinities for. However we then rely on the

shortcomings of superpixels. Furthermore it would not be obvious how to generalize these

ideas to the 3D domain, given that we would have to calculate an affinity between each and

every point.

There are many connections to be made between normalized cuts and the method we will

present in the second chapter, however the reader will have to wait for those!

Efficient Graph-Based Segmentation. In the 2004 paper [FH04] Felzenszwalb and Hutten-
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locher defined an efficient graph based segmentation method. Let again the vertices of a fully

connected weighted graph be pixels of an image (in the notation below the edge strength is

the weightage). Their algorithm begins with setting the each pixel as a separate class. Then

an objective is defined to sequentially combine the classes into a final segmentation [Pan08]:

1. Sort 𝐸 = (𝑒1, . . . , 𝑒𝑚) such that |𝑒𝑡 | ≤ |𝑒𝑡′ | ∀𝑡 < 𝑡′

2. Let 𝑆0 = ({x1} , . . . , {x𝑛}), in other words each initial cluster contains exactly one vertex.

3. For 𝑡 = 1, . . . , 𝑚

• Let x𝑖 and x𝑗 be the vertices connected by 𝑒𝑡 .

• Let 𝐶𝑡−1
x𝑖 be the connected component containing point x𝑖 on iteration 𝑡 − 1, and

𝑙𝑖 = maxmst 𝐶
𝑡−1
x𝑖 be the longest edge in the minimum spanning tree of 𝐶𝑡−1

x𝑖 .

Likewise for 𝑙 𝑗 .

• Merge 𝐶𝑡−1
x𝑖 and 𝐶𝑡−1

x𝑗
if

|𝑒𝑡 | < min
𝑙𝑖 +

𝑘��𝐶𝑡−1
x𝑖

�� , 𝑙𝑗 + 𝑘���𝐶𝑡−1
x𝑗

���


where 𝑘 is a constant.

4. 𝑆 = 𝑆𝑚

The paper also proposes simplification of the graph, by defining edges only for the nearest

neighbours in metric of the feature space. The features considered for the distances were

again just colour (intensity) and coordinate distances.

Mean Shift Segmentation. The mean shift for image segmentation was first introduced in

2002 by Comaniciu and Meer [CM02]. The simple idea behind the algorithm is that you

should be able to find modes of the pixel feature distributions. Then pixels, which have

features near these nodes can be clustered with them, segmenting the image.
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The specifics on the mean-shift algorithm define a way to find these modes of the distribution.

Initially pixels were represented by their colour in the 𝐿∗𝑢∗𝑣∗ colour space and their location

(𝑥, 𝑦). Then, in short, an iterative algorithm is applied to recompute the features describing

each pixel, until these features converge to a few modes.

Feature learning. Results of the segmentation methods discussed above can be seen in

Figure 1.3. There is a trend to be seen in all of these methods. The features they use to define

a pixel is usually not very sophisticated and just based on colour (intensity) and coordinate

values. The works are not about feature learning, but rather defining algorithms to find a

clustering on the features. They are quite agnostic to whatever features one defines. There

will be a shift we will see, where the feature definitions will get more complicated in the

future and even farther (and in our work), feature learning will become the main goal for

many.

1.3 Supervised Segmentation

Labelled datasets and methods leveraging them. We could consider the late 2000s and

2010s the advent of "modern" Computer Vision. The field evolved to put a higher emphasis

on labelled datasets. An example of this is ImageNet [DDS+09], a dataset with 14 million

images, with class labels. ImageNet also gave birth to the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC). Datsets for segmentation and edge detection were also

introduced, like the Berkeley Segmentation Dataset (BSDS300) [MFTM01], with initially just

300 images for segmentation with groundtruth labels and edges.

This brought about many methods for segmentation and edge detection. In particular for

both edge detection and segmentation Pb [MFM04] and gPb [AMFM11], which used the

BSDS300 to learn an edge detector. This time more complicated methods are used to define

the features for pixels, these are for example brightness, colour gradients and textons. Textons

introduced in 2001 [MBLS01] uncover an edge based feature for each pixel. Over a dataset
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Figure 1.4: Original filters, textons deduced from a dataset, image and texton responses.
Figure redacted from [MFM04].

of many images the pixels are first represented by their the response to various edge filters

(orientation), then a k-means step is performed to find cluster centers called textons. The

pixel is then attributed its nearest texton, an illustrative example is shown in Figure 1.4.

A logistic regression model is then learnt over these feature responses and an automatic

algorithm is applied to transform the edge maps into segmentations.

A similar idea is used in TextonBoost [SWRC06], which relied on conditional random fields

(CRFs). Again it uses textons to describe image pixels and learns a semantic segmentation

model over them using CRFs.

Deep Learning. A transformational moment for the field of Computer Vision is deemed the

"AlexNet moment", when in 2012 researchers from University of Toronto won the ImageNet

challenge using a Deep Neural Network (DNN), while leveraging the computational powers

of GPUs [KSH12]. Since then DNNs and more specifically Convolutional Neural Networks

(CNNs) have played a very large role in Computer Vision.

Convolutional Neural Networks. CNNs were first introduced in 1998 as LeNet [LBBH98].

A convolution is a linear transformation, which is shift equivariant on the input signal. A

2D convolutional layer is arranged in 3 dimensions: width, height and depth, where the

convolutional kernel slides across the width and height dimensions, while having the same

number of channels as the input feature.
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Figure 1.5: Input images which maximize the activations of the neuron(s) depicted above.
Figure redacted from [OMS17].

In some tasks which require smaller spatial resolution, convolutional layers are interspersed

with pooling layers, applied to reduce the dimensionality of feature maps while retaining

the spatial information. This downsampling can be done through maxpooling or strided

convolutions. An example of such a task would be image classification. Additionally pooling

layers are also useful to increase the receptive field of a particular feature map.

CNNs can learn hierarchical object-part representations. Building on the first layer repre-

sentations learned from the input images, the latter layers can learn to capture higher level

information e.g. detecting ears. As seen in Figure 1.5, we can visualize this higher level

information by seeing what kind of input maximizes the activation on a particular neuron

of the network [OMS17].

Generative (or reconstructive) CNNs carry a similar promise, however this time earlier layers

have a "higher receptive field" of the generated image, hence carrying higher level concepts

of the generated image. This has however not been visualized or quantified to the best of

our knowledge.

What CNNs allowed to do, which was not possible before is to learn features describing

images automatically. These filters that were previously preselected as in textons, were now
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learnt. Moreover we could have more and higher dimensional filters to learn even higher

level information. In principle, thus, the advent of CNNs allowed for replacing the hand

designed features, with features learnt from the labelled datasets. An example of this is

the seminal work from Long et al. [LSD15], who perform semantic segmentation using a

single neural network trained end-to-end. More models with bettering performance and on

different datasets followed [BKC15], [RFB15].

However, as previously mentioned, in many domains such as medical imaging or astro-

physics ground truth segmentations and in general labelled datastes might be unavailable.

This is where self-supervised segmentation comes in, where we try to learn features which

lend themselves well to segmentation, without any labelled datasets.

1.4 Self-Supervised Learning

As previously mentioned self-supervised learning (SSL) is the learning paradigm where

instead of training with ground truth data we train to optimize for some pretext tasks. This

way we try to learn useful features from unlabelled datasets.

There are many pretext tasks one could solve, for example Doesrch et al. [DGE15] proposed

the task of determining the ordering of patches in an image for unsupervised visual feature

learning. While Pathak et al. [PAED17] proposed predicting the next frame of an episode

for general pretraining of artificial agents.

Of late contrastive learning approaches have been gaining popularity [HFW+20], [CKNH20].

This is an approach where you map a patch of your image to a feature and maximize or

minimize distances between features depending on whether they are generated by patches

which belong to the same image.

More recently DINO [CTM+21] proposed a pretext classification task for a network to learn

self-supervised features. This is also interesting since the pseudo-labels were generated by
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a Mean Teach [TV17]. This is a form of self-distillation, where the network’s targets are

produced by itself. This will be an important concept in the rest of this thesis.

Features from DINO [CTM+21] have been used for self-supervised segmentation. In most

these meethods feature learning is combined with older clustering methods. For example

STEGO [HZH+22] proposes to distill DINO features into smaller features, better suited for

segmentation. These can then be combined with k-means to provide a clustering. While in

DSC [MKRLV22], they propose to combine DINO features with spectral clustering methods

to provide a segmentation.

1.4.1 Neural Fields

A method which has taken over 3D Computer Vision is NeRF [MST+20]. The work itself

aims to perform Novel View Synthesis given a set of images and camera poses. The system

could be considered a form of SSL. However what is most interesting to us is their use of a

Neural Field as the scene representation.

Neural Field is a coordinate conditioned neural network representing a field [XTS+21]. As

previously indicated neural fields can be used as a parametrization for various signals, like

RGB values [MST+20], signed distance functions [PFS+19], occupancy [SLOD21], albedo

[SWL+21] or density [MST+20].

Usually the neural network used to represent these signals is a multi-layer perceptron (MLP).

However the paper Deep Image Prior [UVL20], also uses a Neural Field for some of its in-

painting tasks. However the function approximation is done with a CNN instead, processing

a 2D grid of image coordinates at once. In this thesis we coin the term Convolutional Neural

Field (CNF) to describe this type of an architecture.

The reason we are interested in Neural Fields is not in terms of their representational power,

but rather their feature learning capabilities. By making a CNF reconstruct an image we are

automatically defining a pretext task, which is useful for learning image features at multiple
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Figure 1.6: DIP [UVL20] inpainting results. Left: Original image with mask in white. Right:
Results of inpainting with a CNF.

scales.

1.5 Motivation and Objectives

Due to Neural Fields being such a useful way to represent signals it is important to examine

the features we learn from them.

In thesis we specifically concentrate on the task of segmentation. We attempt to explore how

one could use a Neural Field trained to reconstruct an image to extract a segmentation in a

self-supervised way.

However, we do not also want to rehash existing methods for clustering. It would be easy to

take features from a CNF and use image clustering algorithms mentioned before. However

these methods also do not scale to other domains, for example 3D. At the same time most

vision systems are ultimately supposed to be used for real time inference, which is why we

put an emphasis on efficient and online inference.

The contribution of this thesis is twofold, in the first section we concentrate on the well-

defined 5 problem of interactive segmentation. More specifically we study how one can jointly

5This problem is well-defined, since we only have to consider the labels defined by the user at test time.
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encode semantics and appearance in a CNF, using minimal user interactions to supervise

the semantic information. This helps us study the features from CNFs and develop tools

around these features. The problem of interactive segmentation is also important due to the

aforementioned ambiguity of the problem definition.

In the section part of the thesis, motivated by our previous experience we first attempt to

solve the dual problem of self-supervised contour detection using the features of a CNF.

As previously mentioned the problem of contour detection has always gone hand in hand

with segmentation, however, to the best of our knowledge we are the first work to propose

self-supervised deep edge detection on images. We then use these self-supervised contours

to extract a segmentation, with a novel method, reusing the aforementioned features.



Chapter 2

SegDIP

We now introduce SegDIP. In this section we develop a method for interactive segmentation

using CNF features.

2.1 Introduction

As previously mentioned, the simplest problem definition for semantic segmentation is pixel-

wise labelling. However this problem is fundamentally ill-defined, since these labels are

non-unique e.g. we could label pixels of a brick in a building as both "brick" and "building".

None of these answers are inherently wrong and the preferred answer undoubtedly depends

on the application.

This is why typically for semantic segmentation we train deep neural network on large

datasets, which pre-define the different types of classes. However, not only is there a high

cost to creating these training datasets, but at test time we are limited to the classes we have

previously seen. Instead, we explore an approach that allows for high-quality segmentation

with minimal human interaction because the user monitors the semantic map as it updates

in real-time and clicks only as needed to correct it. The smoothness properties of the CNN

mean that regions and objects are coherently represented, and can frequently be labelled with

22
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only a few clicks. Sometimes, not even a single click is required as the correct properties will

be transferred from already labelled parts of the scene.

Our contributions are as follows:

• We propose an architecture for real-time interactive semantic segmentation without

prior data, a setup which has not been explored before.

• We demonstrate the powerful ability of the DIP architecture to predict semantics in an

image by interpolating from just a few human provided clicks, without any explicit

prior to do so. This is analyzed under the lens of the Neural Tangent Kernel.

• We propose a Temporal Consistency Loss, which takes a big step in helping our setup

become a tool for large scale segmentation.

• We present applications of our system to video tracking, conditional image generation

and unsupervised segmentation.
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0 1 2 3

4 5 7 11

Figure 2.1: How sequential clicking works with SegDIP. We show the number of clicks
supplied by the user and what the segmentation provided by the network looks like after
them.

2.2 Related Work

2.2.1 Semantic Segmentation

Supervised Semantic Segmentation. Most standard semantic segmentation systems are

based on training on densely labelled datasets without any further interaction during test

time, for example U-Net [RFB15] or DeepLabV3 [CPSA17]. Such setups firstly require heavy

resources for the training phase, they are inflexible to the addition of new unseen classes or

refinement during test time and they require dense datasets which are often unavailable.

Semi-supervised learning. There have been methods aiming to alleviate these issues. Scrib-

bleSup [LDJ+16] proposes training a network on a dataset labelled only with scribbles.
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However this method again suffers from the issue of being inflexible to the addition of un-

seen classes at test time, due to the reliance on a training dataset. This is an issue which is

seemingly overcome by both Polygon-RNN [Cas16] and Polygon-RNN++ [ALKF18], which

are based on recurrent architectures with a human-in-the-loop who can adjust the segmenta-

tion at each step. However these methods again require expensive pretraining on a dataset.

We argue that one should be able to do real time semantic segmentation without extensive

pretraining just by analyzing the self similarity in a single image.

2.2.2 Single Image Based Learning

Recently, several deep internal learning methods have been proposed and achieve remarkable

performance that is comparable to that of external methods trained on large-scale datasets.

Methods have been developed to solve superresolution [SCI17] [UVL20] [BKSI20], restoration

[SCI17] [MR19] reflection removal [YFC+20] or deblurring [RZW+20].

All these methods are predated by classical internal learning methods, which have proved

internal approaches can be successfully applied to several image manipulation tasks such as

super-resolution [GBI09] [HS12], dehazing [BI16] or texture synthesis [EL99].

2.2.3 Single Image Based Segmentation

There has also been some work proposed for segmentation. Double-DIP [GSI18] solves the

issue of foreground/background segmentation using two Deep Image Prior architectures

and a saliency initialization, we qualitatively compare against this work. However it is

important to mention that despite requiring some interaction our setup allows for flexible

multi class segmentation as opposed to being limited to two fixed classes. Furthermore we

require no saliency initialization either.

There have also been classical internal methods for segmentation. Bagon et al. [BBI08]

proposed an information theory method to define a good image segment and based on that
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segment an image. GrabCut [RKB04] proposed a foreground/background segmentation

method based on graph cuts by using a user provided bounding box, specifying the region

the foreground is in. We again use this work as a qualitative comparison baseline, however

we again stress our setup allows for flexible multi class segmentation as opposed to being

limited to two fixed classes.

2.3 Method

2.3.1 Deep Image Prior

Let’s first revisit Deep Image Prior. As a general framework the paper treats a neural network

𝑓𝜃 with parameters 𝜃 as a parametrization 𝑥 = 𝑓𝜃(𝑧) by mapping a fixed code 𝑧 ∈ R𝐻×𝑊×𝐿 to

the image 𝑥 ∈ R𝐻×𝑊×3, where 𝐻 and 𝑊 are the height and width of the image.

With this general idea they are able to solve tasks such as denoising by taking the output of

their network after utilizing early stopping to avoid overfitting and minimizing the objective:

min
𝜃

| |𝑥∗ − 𝑥 | |2

where 𝑥∗ = 𝑓𝜃. A similar setup is used for inpainting, by applying a binary mask 𝑀 ∈

{0, 1}𝐻×𝑊 representing the filled region and solving the objective:

min
𝜃

| |𝑥∗ × 𝑀 − 𝑥 × 𝑀 | |2

where 𝑥∗ = 𝑓𝜃. The output of the network often predicts coherent textures on masked out

areas. The function approximation 𝑓 in both these cases is taken to be a convolutional neural

network with the parameters 𝜃 representing the weights and bias in the filers of the network.

The code 𝑧 varies across tasks, but they are either meshgrid i.e. a grid of xy coordinates or
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random noise. For meshgrid we have 𝐿 = 2, whereas for noise 𝐿 can be arbitrary.

2.3.2 Basic Setup

input encoder-decoder network

mean-squared 
error

cross-
entropy

outputs

image

segmentationuser clicks

target image

coordinates

Figure 2.2: SegDIP architecture.

We augment this setup by first assuming we have sparse semantic supervision for the image.

More specifically we have both a mask 𝑀 ∈ {0, 1}𝐻×𝑊 , which masks out the pixels that

do not have a ground truth annotation and a target segmentation 𝑠 ∈ {0, 1}𝐻×𝑊×𝑁 , which

contains the ground truth labels for the appropriate pixels contained in the mask 𝑀, where

𝑁 represents the maximum number of classes we want to segment the image into. We then
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make the network map from the code 𝑧 ∈ R𝐻×𝑊×𝐿 to both the image 𝑥 ∈ R𝐻×𝑊×3 and the

segmentation 𝑠 ∈ R𝐻×𝑊×𝑁 only for the annotated pixels according to the mask 𝑀 i.e. we

minimize the objective:

min
𝜃

| |𝑥∗ − 𝑥 | |2 + ||𝑠∗ × 𝑀 − 𝑠 × 𝑀 | |2

where 𝑥∗, 𝑠∗ = 𝑓𝜃(𝑧). This setup can be used for interpolating a few pre-defined annotations

or for label denoising. However we further augment the system by real-time training and

supplying clicks in the loop. In this case our objective at training timestep t is:

min
𝜃

| |𝑥∗ − 𝑥 | |2 + ||𝑠∗ × 𝑀𝑡 − 𝑠𝑡 × 𝑀𝑡 | |2

where 𝑠𝑡 represents the target with the ground-truth annotations supplied till timestep 𝑡 and

𝑀𝑡 is the binary mask containing only those pixels.

With this setup we can perform real-time semantic segmentation. We, however, find that

this setup can sometimes degrade the segmentation of different areas with the addition of

more annotations. This is why we introduce a novel Temporal Consistency Loss.

2.3.3 Temporal Consistency Loss

Let 𝑄 = {𝑞𝑚}𝑚 be the set of pixels in the image given labels {𝑦𝑚}𝑚 (probability vectors) re-

spectively through an interaction (click, bounding box or stroke). Let 𝑆𝑘 be the segmentation

output of the network on the k-th training iteration of dimensions 𝐻 ×𝑊 × 𝑁 , where 𝐻 is

the height of the image, 𝑊 is the width of the image and 𝑁 is the number of classes (each

𝑆𝑘
𝑖𝑗𝑙

is a probability). We define an augmented 𝐻 ×𝑊 × 𝑁 dimension matrix 𝑇 𝑘 as:
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𝑇 𝑘
𝑖𝑗 =


𝑦𝑚 , if (𝑖 , 𝑗) = 𝑞𝑚

𝑆𝑘
𝑖𝑗
, if (𝑖 , 𝑗) ∉ 𝑄

This is the current model predictions combined with the ground truth provided by the inter-

actions. Furthermore let 𝑀𝑘+1 be a matrix of dimensions 𝐻 ×𝑊 , which has values between

0 and 1 of per pixel weighting.

Then at iteration (k+1), we define:

𝐿𝑘+1 =
∑
𝑖 , 𝑗

BCE(𝑆𝑘+1
𝑖 𝑗 , 𝑇 𝑘

𝑖𝑗 ) ∗ 𝑀
𝑘+1
𝑖 𝑗

where BCE is the binary cross entropy loss. Where we set:

𝑀𝑘+1
𝑖 𝑗 =


1, if (𝑖 , 𝑗) ∈ 𝑄

𝜆, if (𝑖 , 𝑗) ∉ 𝑄

where 𝜆 << 1. We then at iteration (𝑘 + 1) jointly minimize:

min
𝜃

| |𝑥∗ − 𝑥 | |2 + 𝐿𝑘+1

only if there are some annotations in the image, otherwise, we only minimize the reconstruc-

tion loss, given by:

min
𝜃

| |𝑥∗ − 𝑥 | |2

With this setup we can segment many difficult images.
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2.3.4 Implementation

We train the image reconstruction network for each image from scratch. In all our experi-

ments we use an encoder-decoder network. The encoder has 4 layers, then we have a 3 layer

decoder with 2 convolutional heads on top of that, one of which maps to the image and the

other to the segmentation. Each convolutional layer has 128 filters and LeakyRELU activa-

tions. Between each of these layers we perform Batch Normalization [IS15], which we find to

speed up the training process. For the input code 𝑧 we use meshgrid i.e. xy coordinates, we

find that this applies a smooth prior on the segmentation. Replacing meshgrid with random

noise increases the capacity of the network to the point that it overfits particular annotations.

To allow for a smooth training process and avoid jittering with the addition of new clicks we

clip the gradients. The whole setup is trained with AMSGrad [RKK19]. We downsample

through strides, but upsample with nearest-neighbour method.

For the setup with temporal consistency we use 𝜆 = 0.001. We train the network real-time

with a Nvidia GeForce RTX 3080 GPU, which takes around 1 min depending on the image.

We usually downscale images to have both dimensions in the size to be less than 300 pixels.

2.3.5 Training and annotating procedure

Before starting to annotate we usually wait for the image reconstruction to converge to the

point that various objects in the image are recognizable. to start annotating a user has to first

specify the class the annotation will be from, then he can use one of 3 types of annotations:

• Clicks - with which one can supervise one pixel

• Stroke - with which a user can more easily supervise pixels on one single line

• Bounding Box - a user can draw a bounding dox, with which he supervises all the

pixels inside it
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Original 
Image Ours Ours with 

Interactions Double DIP GrabCut

Figure 2.3: Comparison against Double-DIP [GSI18] and Grabcut [RKB04]. System without
temporal consistency and with only click annotations. The number of clicks needed for us
for the images is a) 2, b) 1, c) 3, d) 1, e) 4, f) 5, g) 6, h) 4, i) 7.



32 Chapter 2. SegDIP

2.4 Results

We can firstly just observe how the sequential interactive segmentation looks like in Sec-

tion 2.1. We can see that as the user provides the clicks the network itself find areas self-

similar to the regions clicked and propagates the segmentation to those areas. The user can

then simply fix any errors by the network by supplying more clicks in those areas.

2.4.1 Binary and Multi-Class Segmentation Without Temporal Consis-

tency

We can first perform experiments without temporal consistency loss for 2 class segmentation

on simple images with just clicking annotations (each click contains a single pixel). Even

though this is not what we think is the key advantage of our system, it shows how well our

architecture can interpolate from extremely sparse annotations. In Figure 2.3 we can see

examples of this, where for each image we use at most 8 clicks, but still manage to produce

a reasonable segmentation.

We can further see that on the qualitative examples our system outperforms GrabCut. We

presume this is because of the very high sensitivity of GrabCut to the bounding box, for

images with large foreground areas (with objects of interests) we see the performance is

significantly worse.

Moreover we can see comparable results to Double-DIP despite not using any explicit priors

for segmentation such as saliency. However we also "exceed" their performance on images

with unclear foreground/background segmentation like the broom or on high frequency

images such as the ferris wheel. This is due to the flexibility of providing supervision in our

system - due to the interactions we are able to supply a user with their desired segmentation

of the scene. Secondly we are abel to get high frequency details, because the segmentation

is being performed from the same representation as the reconstruction, thus our system is

able to see smaller details in images and recognize tiny patches.
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What especially sets our system apart is the capability to perform multi class segmentation.

This is also something both Double-DIP and Grabcut are not able to do. Results for this

setup can be seen in Figure 2.4, where we perform multi-class segmentation from just a few

user-provided clicks. We can again notice that for each of these image we need less than 5

clicks per class to produce reasonable segmentation.

Original image Our segmentation Clicks # of 
clicks

4

12

13

8

Figure 2.4: Segmentation from SegDIP on simple multi class images. All segmentation done
in real-time with only clicking annotations, where click size is one pixel.

However the images we have shown so far are limited to simple or smooth textures. We

have found for images with more complicated textures the segmentation quality sometimes

degrades over-time, when a previously correctly predicted pixel is attributed the wrong class

after the addition of more annotations. This in turns means we need a lot more annotations to
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Original image Without TCL With TCL

Figure 2.5: SegDIP for 3 class segmentation with and without the Temporal Consistency Loss
(TCL). The number of user annotations for these images is a) 13, b) 6. Both these images
were not segmented interactively, but run with pre-recorded clicks.

keep correcting previously correctly labelled pixels. This effect can also be seen in Figure 2.5.

Where despite there being multiple annotations on the treeline the network gets confused

by the highly textured leafs. As we can see on Figure 2.5 the Temporal Consistency Loss

mitigates this issue.

2.4.2 Multi-Class Segmentation With Temporal Consistency

We can see further results on Figure 2.6, where we can segment complicated images with

as little as 18 human provided strokes. However even more important is that for all but

one of these images we are supervising less than 1% of the pixels in the image. Especially

impressive are the results for highly textured images as the image with the car or the image

with the elephant. Thus we can reach the conclusion that our system is very close to being a

very efficient labelling tool. With this performance one could imagine the application of our

setup for dataset creation. However it is also important to mention that the TCL suppresses

label propagation slightly, hence why for simple images we might need more annotations

than without it, however this issue is negligible in many real-world segmentation tasks.
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Original Image
Predicted 

Segmentation 
with annotations

Annotations

scribbles pixel (%)

3 0.35

8 0.41

13 0.77

18 1.12

4 0.37

10 0.81

Figure 2.6: SegDIP with Temporal Consistency Loss for multi-class segmentation trained in
real-time with a user. Provided are the number of scribbles needed to segment the image in
the particular examples and the percentage of pixels annotated by these scribbles. All but
one of these images require less than 1% of pixel annotations.
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2.5 Extensions

2.5.1 Neural Tangent Kernel

One can ask, why does this even work? We can further analyze the reason for the performance

of the model, by studying the function approximation itself. The Neural Tangent Kernel

[JGH18], shows that in the limit, where networks get infinitely wide, their behaviour can

be approximated by a Gaussian Process. The kernel of this process is given by the Neural

Tangent Kernel. Through this many important and interesting properties emerge. For

example we are able to estimate the trajectory of the loss curve. However most importantly

for us, we are able to define a similarity between training examples, for us this means

between particular pixels of the image. This is done precisely through the tangent kernel,

which defines a similarity between training samples (Gram matrix).

Neural Tangent Kernel methods have been used to analyze the positional encoding for neural

representations [TSM+20], optimizing networks for shape completion [CPW21] and similarly

for Neural Architecture Search [CGW21], reducing required GPU hours. Most importantly

for us it has been used to analyze the performance of Deep Image Prior for denoising [TTD21].

Interestingly the paper finds that the DIP with normal Stochastic Gradient Descent optimizier

is like a non-local filter and the behaviour of the network can be approximated by some fixed

kernel. While with ADAM [KB14] it acts like a non-local filter, improving performance.

In this section, we thus consider our network trained only with a reconstruction loss, without

any interaction. We can thus analyze what kind of a prior (kernel) is imposed by our network

and how this effects the segmentation.

For Gradient Descent and with the infinite depth assumption for each layer the kernel is

constant. However this changes when we have a rather small depth at each layer and when

we use Adam optimizer [KB14]. At training iteration 𝑡, Adam optimizer updates the weights

according to:
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𝜃𝑡+1 = 𝜃𝑡 − 𝜂̃𝐻𝑡 𝛿ℒ
𝛿𝜃

(
𝜃𝑡
)
+ 𝛽1

(
𝜃𝑡 − 𝜃𝑡−1

)
where 𝜃 are the weights of the network 𝛽1 is a hyperparameter controlling the momentum

and learning rate, 𝜂̃ = 𝜂 (1 − 𝛽1) and 𝐻𝑡 is a diagonal matrix containing the inverse of a

running average of the squared value of the gradients, computed using the hyperparameter

𝛽2. The network outputs are then updated according to:

𝑧𝑡+1 = 𝑧𝑡 + 𝜂̃Θ̃𝑡
𝐿

(
𝑦 − 𝑧𝑡

)
+ 𝛽1

(
𝑧𝑡 − 𝑧𝑡−1

)
where for simplicity we used 𝑧 = 𝑥∗ and where Θ̃𝑡 is the resulting gram matrix, which is

adapted at each iteration, according to the rule [TTD21]:

Θ̃𝑡 =
𝛿𝑥∗

𝛿𝜃
𝐻𝑡

(
𝛿𝑥∗

𝛿𝜃

)⊤�����
𝜃=𝜃𝑡

where 𝑥∗ = 𝑓𝜃(𝑧). The matrix 𝐻 𝑘 imposes a metric in the weight space which differs from

the standard Euclidean metric of Gradient Descent.

The calculation for the whole gram matrix is very expensive and scales quaternarily with the

number of pixels. Thus we will instead pick a single pixel and find the affinities with other

pixels as per the aforementioned rule. It is important to note that the kernel is not stationary

and changes over the training process.

In Figure 2.7 we can see how the gram matrix for a given pixel changes as the training

progresses. We can see that at the start of the training high affinity areas are vaguely

clustered around the pixel in question. However these high affinity areas become more

semantically meaningful as the training continues. We can also see how the affinity map

becomes more concentrated around specific pixels with more iterations, this is visible in the

bird example and one of the living room examples. This in turn also means a higher intensity
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Input image with 
given pixel

Gram matrix visualization for pixel
10 iterations 510 iterations 1010 iterations

Figure 2.7: Gram matrix visualized for specific pixels in an image based on the Neural
Tangent Kernel at different iterations of the network. The reference pixel given in the first
columns. Brighter regions have higher affinity.
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on some small specific areas.

The kernel map intuitively predicts how the labels will propagate for a single click in that

area, by denoting the similarity between the pixels. Hence it also makes sense that we would

want to start clicking before the network overfits to the image (iteration 1010).

It is interesting to notice that the kernel seems to be doing more than just simply colour based

intensity mapping. This is especially visible on the living room picture, where we visualize

the similarities for a pixel on the wall. There are parts of wall separated by the furniture that

is not attributed a high affinity despite having a very similar colour to the highlighted pixel.

We can thus conclude that our network imposes a similarity based not only on colours, but

also the geometry of the image itself.

2.5.2 Video Tracking

Video tracking is the problem of segmenting the same object across different frames in a

video of a scene. Past methods used to tackle this problem include using rigid registration

[BR08], mean shift [CRM00] or deep learning based methods [LMS+22]1.

We mend SegDIP to having an object tracking capability. Intuitively we segment the first

frame of the video, while optimizing our network to reconstruct it. Later on we change the

frames to optimize the reconstruction for, to subsequent frames, while the video segmentation

consistency remains. The setup is similar to the concurrent work of Lei et al. [LXOC22],

however we use interactions as opposed to a dense groundtruth map for the scene. On top

of that our method is able to work online.

Let {𝑥𝑡}𝑡 be a set of frames from a video, where 𝑥𝑡 ∈ R𝐻×𝑊×3. For tracking in a video on the

first frame we train the exact same setup as with the Temporal Consistency Loss, allowing

a user to annotate the frame in real time, i.e. if there are annotations in the frame we are

minimizing:

1This is not a comprehensive review of video tracking.
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min
𝜃

| |𝑥∗ − 𝑥1 | |2 + 𝐿𝑘+1

However now we allow the user to switch the frame of the video to the next one, retraining

the reconstruction loss towards the new image target. In this way if the user switched the

loss towards the frame 𝑡 before timestep (𝑘 + 1) then we are minimizing:

min
𝜃

| |𝑥∗ − 𝑥0 | |2 + 𝐿𝑘+1

however it is important to note that we reinstantiate the aforementioned annotations 𝑄 for

each frame, hence we have:

𝐿𝑘+1 =
∑
𝑖 , 𝑗

BCE(𝑆𝑘+1
𝑖 𝑗 , 𝑇 𝑘

𝑖𝑗 ) ∗ 𝑀
𝑘+1
𝑖 𝑗

where 𝑀𝑘+1
𝑖 𝑗 = 𝜆. This forces also a temporal consistency across different frames on the

video. We note that this setup let’s us track the objects we annotated only in the first frame

across the whole video.

We can perform video tracking experiments on two simple scenes. We switch the frames

every some iterations (as described above). For each video we only provide annotations

in the first frame. From Figure 2.8 we can see that SegDIP performs well on these simple

tracking problems, it does not get pixel perfect results, however it is able to generally track

the shape as it moves through the scene.

Our setup also allows fixing errors during the training in further frames, however we con-

centrate on only showing tracking abilities in these experiments.
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Frame 1 
(with annotations) Frame 6 Frame 11 Frame 16 Frame 21 Frame 26

Figure 2.8: Tracking results for with SegDIP. We can see that annotations given on the first
frame and no other annotations on the subsequent ones. Even with videos longer than 20
frames we can see the the inter-frame consistency remains.

2.5.3 Image Generation

Image generation from a single image has been attempted before. The most famous work in

this regard is of course SinGAN [RSDM19]. The paper trains a multi-scale GAN, to learn to

generate images, with training the system on a single image. Similar work recently replaces

the GAN with a more classical patch based method, which is more stable [GFS+22].

In SegDIP, we are using an image and sparse annotations to infer a dense segmentation.

Inspired by the cosegmentation setup in [BBI08], we could ask whether we can use the

segmentation to generate an image. In this spirit, suppose we are given an image. We then

use SegDIP to segment this image with sparse annotations, but at the same time we also

draw semantic annotations on a "blank canvas", which is then used to generate a new image.

More formally suppose we have our target image 𝑥 ∈ R𝐻×𝑊×3, which we augment by making

it two times wider i.e. 𝑥 ∈ R𝐻×2𝑊×3, where we just add an array of zeros on the right side.

We then make the network map from the code 𝑧 ∈ R𝐻×2𝑊×𝐿 to both the image 𝑥 ∈ R𝐻×2𝑊×3
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and the segmentation 𝑠 ∈ R𝐻×2𝑊×𝑁 , however the loss for the image is only applied to the left

side of the 𝑥 tensor. In other words suppose 𝑀∗ ∈ R𝐻×2𝑊 , such that:

𝑀∗
𝑚𝑛 =


1, if 𝑛 ≤ 𝐻

0, if 𝑛 > 𝐻

Then we also have the mask from our segmentation, as before, just doubled in width, it is

indexed by time, due to the online user interaction:

min
𝜃

| |𝑀∗ ⊗ (𝑥∗ − 𝑥)| |2 + ||𝑠∗ × 𝑀𝑡 − 𝑠𝑡 × 𝑀𝑡 | |2

where 𝑠𝑡 represents the target with the ground-truth annotations supplied till timestep 𝑡 and

𝑀𝑡 is the binary mask containing only those pixels.

The results of segmenting a soldier image and generating a image from a similar distribution

is presented in Figure 2.9. There are 6 classes present in the given example ground, grass,

wall, pants, shirt and helmet.

A few things are especially astonishing. Firstly the generated image as emergent classes

present in it. The gloves and the shadows are not classes present in the semantic image

provided to the image network, nonetheless they are present in the generated image. Clearly

this single image was enough for the network to learn the pattern of a glove present by the

intersection of the pants and shirt or there is a shadow cast by the person.

Secondly we can see that the network is not just generating colours, but also textures. This

is better visible on the grass, where the grass is two toned on the original image and it is

also two toned in the generated image. This result shows that the network does not just have

colour information, but textural information, which it also uses for segmentation tasks.

These results are really astonishing and show akin to SinGAN [RSDM19] how much can be

learnt from a single image.
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Figure 2.9: First row: the original image overlaid with the annotations (box ones fill the
whole region), second row: shows the interpolated segmentation from the network, third
row: shows the image output from the network.
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There are of course drawbacks, for example the helmet is not present in the generated image,

despite the annotation give. This is supposedly due to the helmet class leaking to the shirt

(as seen on the segmentation).

Nonetheless this defines a very interesting experiment, which could be taken further for

image generation using a single image/scene.

2.5.4 Self-Supervised Segmentation through self-distillation

The final extension for SegDIP is an idea for self-supervised segmentation i.e. segmentation

without any user input. This is of course not well defined, however it would be very

interesting to see what kind of a segmentation the network itself generates, given that we

know from earlier that it has a textural understanding of the image.

The setup we will present is similar to region growing segmentation methods, which were

highly prevalent in the literature before [BJ88].

Inspired by the Temporal Consistency loss, we supervise the network through its own pre-

dictions. More specifically, suppose our segmentation has 𝑛 classes, each initialized with a

separate click as in SegDIP. Then at each training iteration for each class we find the pixel

with the highest probability to be in that class and provide a click on it automatically (with

the label it has the highest probability for).

More formally let our loss be as before:

min
𝜃

| |(𝑥∗ − 𝑥)| |2 + ||𝑠∗ × 𝑀𝑡 − 𝑠𝑡 × 𝑀𝑡 | |2

This time however for each 𝑛 classes we at 𝑡-th iteration we find the pixels 𝑞1, 𝑞2...𝑞𝑛 with

the highest probability (as per the networks own prediction) of being in the subsequent class

we replace 𝑠∗
𝑞𝑖 ,𝑖

= 1 and 𝑀𝑡𝑞𝑖
= 1.
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clicks 2 200 400 800 1600

Figure 2.10: First row: region growing with spread only to neighbouring pixels, second row:
label propagation with non-restricted spread

Results of this can be seen in Figure 2.10. The results are not similar to how a human would

segment the images and is even worse than colour segmentation.

The following formulation has an issue that we are not adding anymore information to the

segmentation with these clicks. This is mainly because of the overconfidence of the network.

As can be seen, the network is highly overconfident of its own predictions, and hence a new

click will not change the expected distribution of the network.

We thus also try a setup where the labels can only propagate to the nearest regions. This

adds a sort of "coherence prior", where pixels nearly are most likely to be in the region being

grown. This is clearly not scalable to disjoint objects and struggles with its own issues of

when to stop region growing. A simple threshold version, where we stop region growing

once there are not enough pixels with a high probability to belong to a certain class does not

work due to the overconfidence of the network.

2.6 Conclusions

We have shown that online, image-specific training of a compact CNN model which jointly

encodes appearance and semantics allows ultra-sparse interactive labelling to produce accu-
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rate dense semantic segmentation. Despite promising results, our system’s label propagation

mechanism works well mainly for proximal regions or those sharing similar colour/texture.

However it must be mentioned that the setup we are exploring is extremely constrained

and apart from colour and proximity, there is not much more information that can be

found through a single image. Nonetheless we expect a deeper understanding and study of

network architecture and its biases would give us a lot more insight into engineering further

segmentation priors into the network itself e.g. through architectural changes.

Nonetheless the system is very versatile and introduced a lot of new ideas, also some further

explored in the subsequent section of this thesis.

Many of the extensions offer exciting new ideas and possibilities for further work. We are

especially astonished by the video tracking results and even though they are still far from

pixel perfect tracking, we believe the results have a lot of potential for improvement. Some

further areas of exploration could include incorporating optical flow information into the

network or helping the network converge quicker to the new frame.

The image generation results are also very exciting and show a glimpse of the understanding

the network develops of the image.



Chapter 3

Self-Supervised Segmentation using

Contours

We now move on to the problem of self-supervised segmentation from CNF features. From

the previous section it was visible that the single segmentation head on top of the CNF

features gives unreliable uncertainty estimates and we can not derive a meaningful segmen-

tations from it.

In this work we thus concentrate on an ensambling type method, which tests multiple

hypotheses for segmentations and combines all of them together through the idea of contours.

It is important to mention that for self-supervised segmentations it is not obvious how to

combine multiple maps, since the labels do not mean anything. It is more sensible to combine

contour maps as they are label agnostic. This motivates our work using contours.

3.1 Introduction

There has been a major uptrend in methods for self-supervised segmentation due to the

increasing quality of self-supervised image features. Most of these methods consider pretext

47



48 Chapter 3. Self-Supervised Segmentation using Contours

tasks on large datasets to learn useful feature extractors, which can then be used for various

downstream applications.

Single scene learning, however, has seen an abundance of research with the advent of Neural

Representations. Parametrizing scenes and images using neural networks is a natural way

to learn hierarchical features describing the data.

In our work we show that Neural Representations, due to their reconstructive nature, encode

features useful for self-supervised segmentation.

We design a way to use a Neural Representation to extract image contours, a problem dual to

the task of segmentation. We then describe a method to go from contours to a segmentation,

all within the scope of the same Neural Representation.

More specifically we make use of a Convolutional Neural Field (CNF) to map from an image

of coordinates to the target RGB image and multiple segmentation heads, which all explore

various segmentation hypotheses. We then design a custom loss, which distills the collective

information from each head across all of them to reach consensus contours. On top of the

network we have another segmentation head, which learns to match the contours found with

the aforementioned method and produce a final segmentation.

Our system outperforms classical methods for self-supervised contour detection, which

make use of hand designed features. We also show that qualitatively the segmentations

from our method are of similar quality to those produced by state-of-the-art self-supervised

segmentation methods. Our experiments showcase that there is a lot to be learnt from just

relying on self-similarity within a single image.
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input encoder-decoder network

coordinates

mean-squared 
error

contours

mean L1 loss

L1 loss contours

final segmentation

intermediate 
segmentation 

heads

image
outputs

Figure 3.1: System diagram for our contour detection method. Our coordinate conditioned
encoder-decoder network produces three outputs. The original image, trained with a mean-
squared error for reconstruction. Multiple intermediate segmentation heads, trained with
self-distillation loss. Additionally the final segmentation, trained to match the mean con-
tours.
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3.2 Related Work

3.2.1 Self-Supervised Feature Learning and Segmentation

Non-Learning methods. There has been a lot of prior work on single image segmentation

without the use of deep learning. Normalized Cuts [SM00] forms the problem of segmen-

tation as a graph-cut problem on a weighted graph where the nodes represent the pixels

and the weights between them are affinities, found by composing exponentials with distance

functions of coordinates or intensities. Mean Shift [CM02] uses a mode seeking algorithm

to find the pixel modes in feature space. All these algorithms use hand-designed features to

represent the image.

Deep Learning methods. Self-supervised feature learning [HFW+20], [GSA+20], [CTM+21],

[CKNH20] has been essential for the advent of self-supervised segmentation methods. An

example of such work is DINO [CTM+21], the work proposes to learn useful features by

making a teacher and student network map augmented image patches to a distribution,

essentially defining a dummy classification task on patches.

DINO has sparked many works on self-supervised segmentation [HZH+22], [WSH+22],

[MKRLV22]. Most of these methods reuse couple classical clustering methods like spectral

clustering, k-means clustering or normalized cuts with features learnt in self-supervised

learning frameworks.

Due to the features being trained on datasets, they are able to perform object recognition as

well as segmentation. In our method we are not able to generalize across images and hence

lack the ability to perform recognition. However our total training time (including learning

features) is greatly reduced by training on just one image.

Furthermore our method showcases how much one can learn from processing just a single

image using deep priors.

There has been some previous work also on learning features from a single image and using
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this for self-supervised segmentation [KKT20] or superpixels segmentation [Suz20].

Due to supervision only trough reconstruction of the signal, however, our method can

generalize to various domains, for example 3D, since our inputs are pixel coordinates instead

of an actual image. The processing we do, could be instead done with an MLP.

3.2.2 Contour detection

In our work work we include the intermediate step of contour detection. There have been

several previous methods proposed for contour detection. Earlier methods relied on con-

volving gradient filters with grayscale images like Roberts [Rob63] and Sobel [Sob14]. A

similar approach is proposed by the popular Canny edge detector [Can86], which convolves

a gradient filter with a grayscale image, but additionally uses non-maximal suppression to

get thinner edges and hysteresis for continuity in edge strengths.

After the advent of labelled datasets [MFTM01], methods have relied on supervision to

learn the contour detectors BEL [DTB06], Pb [MFM04], gPb [AMFM11], SED [DZ14]. As

an example Pb [MFM04] uses local oriented gradient filters, which are then used as pixel

descriptors for a logistic regression solver, gPb [AMFM11] adds an extra global feature to the

weights using spectral decomposition.

With the uptake of Deep Learning, methods have still mainly relied on supervision for con-

tour prediction, however the features used for these edge detectors are now learnt DeepEdge

[BST14], DeepContour [SWW+15], HED [XT15], COB [MPTAG17].

As previously mentioned the features are learnt from a dataset with groundtruth contours

given. To the best of our knowledge we are the only method for generating self-supervised

deep contours.
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3.3 Method

Our method requires a target image 𝑥 ∈ R𝐻×𝑊×3. We perform image specific training and

require no pretraining.

3.3.1 Overview of Method

In short we have a Convolutional Neural Network 𝑓𝜃 which takes in an image of coordinates

and outputs features 𝑓 ∈ R𝐻×𝑊×128. We map these features to the original image 𝑥 with 𝑓𝜃′ ,

𝑁 intermediate segmentations with 𝑓𝐻 and a final segmentation with 𝑓𝐻′ . The network

𝑓𝜃 with 𝑓𝜃′ is trained only with the reconstruction loss for the original image. The layer

𝑓𝐻 is trained to match randomly sampled ground truth points for each segmentation and a

contour based mutual distillation loss between the heads. The final segmentation head 𝑓𝐻′

is meant to match the contours found using the aforementioned loss. An overview of the

method can be found in Figure 3.1

3.3.2 Intermediate Segmentations

The feature 𝑓 from the network 𝑓𝜃 is transformed to 𝑁 , 𝑚 class segmentations i.e. 𝑁 features

of size 𝐻 ×𝑊 × 𝑚, where each position spatial position defines a probability vector over 𝑚

classes. To ensure variance across each of these 𝑁 heads, for each head we pick random 𝑚

separate pixels, for which we randomly assign to one of the 𝑚 classes. This is enforced by

adding a cross entropy loss on the chosen pixels for each head.

This loss ensures each head is concentrating on separating different parts of the image.

Furthermore after some iterations to help the heads find a consensus segmentation we

combine them. Combining them simply through a mean would not work, since the classes

in each head have been assigned randomly.
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Figure 3.2: Depiction of the differentiable transformation from segmentation to contours.

Instead we combine the heads through a mean of contours. Given a segmentation head i.e.

𝐻 ×𝑊 𝑚 class distributions, we take neighbouring pixels and we find the probability they

are in different classes, this gives the probability of there being a contour between them. This

is illustrated for a 2 × 2 sized with a 2 class segmentation in Figure 3.2.

We can see this transformation from segmentation to contours is differentiable and it is class

agnostic, hence we can take of these contours across all heads to get a mean contour image

as depicted in Figure 3.1.

We then take the 𝐿1 loss between the contour image from each segmentation head and the

mean edge image and propagate this loss through to 𝑓𝐻 . This ensures a consensus is reached

between each of the heads, while the aforementioned clicks ensure our heads are diverse.

3.3.3 Final segmentation

For the final segmentation we again find its contours using the idea from Figure 3.2. We then

again use an 𝐿1 loss to have the final segmentation match the edges from the mean edges.
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To ensure this final segmentation does not collapse to a few classes we use centring before

applying the softmax, this is the same idea as used in DINO [CTM+21].

3.3.4 Implementation details

For 𝑓𝜃 we use a CNN encoder-decoder with downsampling using strided convolutions in

the encoder and upsampling using nearest neighbour upsampler. For the means retention

value in the centring we use 0.2.

We also use 𝑚 = 4, due to the 4 colour theorem [AH77]. We found that generally many of

the heads after the mutual distillation loss converged to the same tensor, which is why we

needed them to be able to represent any possible edge configuration. The 4 colour theorem

states that any planar graph can be coloured with 4 colours, hence by having 4 classes we

can represent any possible edge image with a single head not restricting our convergence.

All the experiments were conducted on an Nvidia GeForce RTX 3080M with 16GB of memory.

3.3.5 Connection to Normalized Cuts

The method we have is an extremely unique setup for self-supervised segmentation and

there is not many direct connections one could make. However there are some high-level

connections we could make, to help understand the method.

Contours as affinity. Firstly the contour map we have can be treated as a probability map

i.e. the probability that two pixels are a different class. This can also be treated as a

distance measure between the two pixels. Hence as in Normalized Cuts we are constructing

a weighted graph on the pixels space. However, we are only calculating the distance between

each two pixels nearby. Hence in essence we are constructing a simplified, more memory

efficient graph, which reduces to nearby edges. This can be interpreted as having edges only

for neighbours with 𝐿1 distance 1 in coordinate space. This is better illustrated in Figure 3.3.
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(a) (b)

Figure 3.3: (a) The construction of our graph is reduced to edges between neighbours. (b)
Normalized Cuts [SM00] assumes a fully connected graph.

Distance bias. Furthermore another connection can be made in their features. In Normal-

ized Cuts, the authors explicitly add the coordinates as features describing pixels, we do

something similar by having the pixels as input to the network, biasing the network to have

similar predictions for nearby pixels.

3.4 Results

We first perform contour evaluation on the Berkeley Segmentation Dataset (BSDS500) [MFTM01].

More specifically we use the 200 training images given in the test set for benchmarking. We

compare against other contour detection methods. For the contour experiments we will use

non-maximal suppression [Can86] for thinner contours.

The method we use for comparison is the precision-recall framework developed by Martin et

al. [MFM04]. The Berkeley dataset contains 5 groundtruth edge maps drawn/developed by

separate users. The comparison takes a contour map, which gives each pixel a probability of
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Figure 3.4: Groundtruth image alongside 5 human drawn segmentations from Berkeley
Segmentation Dataset [MFTM01]. Figure redacted from [Pan08].



3.4. Results 57

being a contour. Then a threshold is selected and contours above the threshold are considered

contours and others are not. The method then takes a predicted contour and matches it to

each of the 5 human contour maps, if the contour is not present in any of the 5 maps, then

it is considered a false positive. The predicted contour map achieves maximum recall if it

explains all of the human annotated contour maps.

We also later present results for the F-score (= 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 ) for OIS (optimal image scale),

where we choose the optimal threshold per image. ODS (optimal dataset scale) where the

threshold is chosen for the whole dataset. We also present the R50 score, which is the recall at

0.5 precision and AP, which is the area under the curve of the precision recall curve discussed

earlier.

Comment on precision-recall evaluation. There are some discussions one could have on

the validity of the precision-recall framework for measuring the performance of contours.

Firstly, the BSDS dataset contains not only semantic contours - some users draw out also

textures. Thus the evaluation method does not lead itself to semantic contours perfectly.

Furthermore for recall we expect the contours to match each human drawn map. This is not

the best way to measure the contour map quality, as we know segmentation can be up to

the user, and a self-supervised segmentation is "good" if it explains any single one of the

segmentations. This can be further supported by measuring the human performance using

this framework. Human drawn contours achieve an F-score of only 0.8 on the Berkeley

Segmentation Dataset as reported in HED [XT15]. The ambiguity of BSDS can be seen in

Figure 3.4.

However an argument can also be made in favour of measuring the recall as it is. One could

appeal to the usefulness of a contour map, a self-supervised segmentation is useful if a user

can easily interact with it. And that means he can recover all the possible segmentations

from it and hence also all possible contours.
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Figure 3.5: Comparison plot for different number of layers in the base network and the
combined edges from both using an arithmetic mean.
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3.4.1 Aggregating multiple scales

As we can see from Figure 3.5 the 3 layer encoder-decoder network generally produces a

higher precision value i.e. the most of the contours it produces are contained in groundtruth

contours, however it generally has a lower recall i.e. there are many groundtruth contours

it does not produce. As compared to the the 4 layer network, which generally gives higher

recall of contours but lower precision. This is not generally because the contours present in

the 3 layer network are not in the 4 layer network, but rather it has to do with the threshold.

For the precision recall curves we set a threshold and declare all contours which have a

strength above that threshold to be positives. The 4 layer network does not favour contours

that come up in the 3 layer network predictions (strength wise), even though that is the

desired behaviour.

This behaviour is desired due to simple scale analysis, a 3 layer network generally gives less

contours but those which are present should have a higher strength, since they are probable

to be correct.

This is also why in Figure 3.5 we also plot out the results of the combination of the two scales

i.e. one in which we take a simple arithmetic mean between the two predictions.

The results indicate that this combination gets the best of both worlds, a high precision but

also good recall.

3.4.2 Comparison with other methods

As we can see we perform better than most unsupervised methods. The only method which

achieves a better F-score, is Normalized Cuts [SM00], however we can see that still for many

threshold our contours attain much higher precision.

This can be further seen in Figure 3.7, where of all the methods without supervision we

achieve the highest Area Under the Curve (Average precision - AP). In fact out Area under
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Figure 3.6: Comparison plot on the BSDS dataset for all methods. In continuous line are the
unsupervised methods and dotted ones are the supervised methods.
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the curve is nearing some supervised methods (like Pb). We can generally see in other

metrics we are at the higher end of the measure, however we mainly suffer due to our poor

recall. We do not always get all of the required contours in all the contour maps.

Method ODS OIS AP R50

Roberts 0.48 0.51 0.41 0.26

Sobel 0.54 0.58 0.50 0.54

Mean Shift 0.60 0.65 0.50 0.73

Canny 0.61 0.68 0.52 0.75

NCut 0.63 0.66 0.42 0.80

Ours 0.62 0.65 0.63 0.77

BEL 0.65 0.67 0.70 0.82

Pb 0.67 0.70 0.65 0.82

gPb 0.73 0.76 0.75 0.89

SE 0.74 0.76 0.80 0.93

HED 0.79 0.81 0.84 0.92

COB 0.79 0.82 0.85 0.93

Figure 3.7: Table comparing the optimal F-score for the OIS (optimal image scale) and ODS
(optimal dataset scale), AP (averge precision) also known as AUC of precision recall curve,
R50 (recall at 0.5 precision). All results below the dashed line are supervised.

It is quite impressive that even though many of these methods are specifically hand designed

to get accurate contours, we are able to perform as well as them, despite optimizing a quite

different objective.

Our objective just maximizes for agreement between the different segmentation heads and

it is able to find semantically consistent contours.

In Figure 3.8 we can see examples of contours from our method, gPb [AMFM11] - a supervised

method and groundtruth contours from one of the annotator.

As we can see the problem is difficult due to the sole nature of segmentation, due to ambiguity

it is not known which contours might be required.

Even though labelling the reflection of the swan would usually seem unnecessary it is
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Figure 3.8: Images and contours produced by our method and gPb [AMFM11], which is
supervised. The groundtruth image is just one of the groundtruth images of 5 given in the
dataset. All 5 groundtruth contours can be found in the appendix.

done here by the annotator. Nonetheless our contours are very much comparable to ones

produced by the supervised method in the presented images. However it must be said that

image contrast does play a role for us as can be seen by the missing beak in our method.

3.4.3 Segmentation

We can also study our segmentation method, or more specifically our method to go from

contours to a segmentation. Results for the 4 layer network can be found in Figure 3.10.

We firstly compare qualitatively to DFC [KKT20]. As we can see our results here are quite

noisy, this we will show later is caused by the centring, however what we do better at is higher
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Figure 3.9: Segmentation comparison for the 4 layer network. Second row: contours pro-
duced by our method with non-maximal suppression (NMS was not used for the segmenta-
tion), third row: our segmentation from our contours (without NMS), fourth row: segmen-
tation using owt-ucm [AMFM11] with our contours (without NMS), fifth row: segmentation
from DFC [KKT20].



64 Chapter 3. Self-Supervised Segmentation using Contours

frequency segmentation. This is especially visible in the first image, where we are able to

perfectly get all the small details in the sleigh. This is because of our network architecture,

DCF uses a network which has the image as its input, which means that some of the high

frequency details are lost during the processing, this is further exacerbated by their spatial

continuity loss, which encourages nearby pixels to have the same label. Both methods follow

the image edges very well and are able to label across image parts, like for the two sleighs.

We also compare our method to go from contours to segmentation with owt-ucm [AMFM11].

Owt-ucm takes the contour images and transforms it into a segmentation by first calculating

the oriented watershed transform (owt), what the algorithm does is ensure piecewise edge

strength continuity (similar to hysteresis in Canny [Can86]). Then thresholds are applied

on the edgemap to get multiple (hierarchical) contours called the ultrametric contour map.

This is simply transformed into a segmentation by filling in closed regions. The results we

report are for a single threshold chosen to be 0.1. As we can see owt-ucm is not able to join

disparate regions (like for the sleighs). Due to our method using again the image features to

perform the segmentation, we are aware of things like texture etc, which allows us to be able

to join separate region into the same class. However this also means we are slightly biased to

colour and can sometimes classify things together incorrectly, like the windows and ladies

on the picture of the houses.

Centring and noisy segmentation. Some of the noise in our segmentation can be attributed

to the artifact of the upsampling network. This is a known issue in CNNs and was even

covered in a Distill article [ODO16]. Most sources recommend to use Nearest Neighbour

upsamplers to get rid of checkerboard patters (this can be seen in the mountains on the

sleights image Figure 3.10). We do use these, however the issue still persists. Using a network

without upsampling/downsampling solves the issue, however causes much computational

overhead.

A second thing causing this issue is the centring. Centring (or batch normalization) has been

used on logits before softmax in many sources seeking to avoid mode collapse [CTM+21],
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image

without 
centering

with 
centering

Figure 3.10: Segmentation comparison for the 4 layer network. Second row: contours
produced by our method with non-maximal suppression (NMS was not used for the seg-
mentation), third row: our segmentation from our contours (without NMS), fourth row:
segmentation using owt-ucm [AMFM11] with our contours (without NMS), fifth row: seg-
mentation from DFC [KKT20].

[KKT20]. However this is not a fool proof way of ensuring having many classes and can lead

to noisy segmentations as we can see. The results without the centring are presented below.

We can see they are much less noisy, however they do collapse to but a few classes, which is

of course undesirable at the end of the day.

3.5 Conclusions

We can see we have produced a very unique self-distillation based setup for contour de-

tection and segmentation. The method we have produced performs on par with other

self-supervised methods for contour detection, even though we never specifically maximize

for that objective. The results from our segmentation are also comparable to other state of

the art self-supervised segmentation methods.

There are still however many elements and improvements that could be incorporated into
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our work.

Multi-scale. What is interesting is that scale is a very natural element for us and can be very

easily incorporated into our system. This is the next step for our work, to have one network

which is able to produce results at different scales which can all be combined. This is akin

to what we are doing now however with different networks. It would be more efficient if we

could get the same results running just a single network. An idea could be to incroporate

the multi-scale neural fields used in Bacon [LVPW21] to get fields at multiple scales at ones,

with just supervision at one level.

Segmentation noise. Another important avenue for us to explore would be to get segmen-

tation without noise. An idea for how we could do this is to remove the use of centring

and just rely on contours. What could we do with this setup? Currently edge strengths are

small, so even though a contour would have a probability of 0.5, to our segmentation head

this might not be enough to separate pixels into different classes. So perhaps an idea could

be to increase the strength of contours - then we could have a non collapsing segmentation

without centring, while also removing the noise.

Object recognition. This is not obvious how to do but a natural extension to segmentation

would be object recognition. There have been many works trying to extend neural fields

across scenes using various approaches like meta-learning [SMB+20], [TMW+21] or auto-

decoding [PFS+19]. However these currently do not work quite well and are expensive to

train. However perhaps in the future this generalization would also allow us to do recognition

apart from just segmentation.

3D domain. Finally since all of the work here is been done with a Neural Field, we can

extend our work to the 3D domain. Glossing over some details, our method would be able

to segment a single scene in a self-supervised way while also producing contours for each

keyframe.



Chapter 4

Conclusion

In this thesis, we have investigated the use of neural representations for self-supervised

segmentation. In the first chapter we introduced SegDIP, a solution to the better defined

problem of interactive image segmentation i.e. where a user is providing sparse supervision

to the network.

We then introduced multiple extensions for our work. Firstly we used Neural Tangent Kernel

literature to analyze the behaviour of our network. Secondly we introduced a way to generate

images using the user provided semantics. Finally inspired by the Temporal Consistency

loss we designed a method for self-supervised segmentation. The method was not successful

in giving us the desired results (semantic looking self-supervised segmentation), however it

did educate our choices for the following work.

In the second stage of our work, using the lessons learnt in SegDIP, we introduced a method

for self-supervised segmentation. We learnt that an ensamble based method would be of

use to us, and with the help of the ensamble we designed a unique self-distillation setup for

image contour detection. We then designed a method to go from contours to segmentation.

We compared our method to self-supervised contour detection methods.

67
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4.0.1 Future work

3D. All of the work introduced here can be generalized to 3D. With the increasing use of

Neural Fields in 3D Computer Vision [XTS+21], this system introduced especially in the

second chapter would be of major use. Self-supervised segmentation is a budding topic,

and doing these same methods in 3D are very difficult, since its unknown how exactly to

represent this data. With the use of Neural Representations it has become simpler to train

with just images and hence it is also simple to incorporate 2D learning ideas into these

methods.

Improve performance of contour detection. Furthermore as previously mentioned there

is still room to better the performance in our work, we are currently not using the full

multi-scale capabilities of our convolutional network, which can be further explored.

We would also hope in the future the use of a reconstruction/generative objective can be

explored for self-supervised object segmentation and recognition.

Discriminative vs generative. We hope our work is a step towards blending of generation

and discrimination. These two tasks should not be separated in our models. A good

segmentation model should inform our reconstruction and a good reconstruction should

give us a better understanding of the scene. These two paradigms are currently separated

in our methods, we either design generative networks to learn to model data or networks to

segment and classify.

Increasingly many neuroscientists have been exploring these blended objectives in their work

for example in GLOM by Hinton [Hin21] or in the Thousand Brain Theory book by Hawkins

[HD21]. The idea is that our brains are constantly predicting future frames (generation)

and this generation process should also help us better understand how to separately store

different representations efficiently in our brain, thus a segmentation naturally arises.

Final objective of this work. Nonetheless we hope with this thesis we have shown that there

is a lot of information to be learnt from a single image. Self-supervised segmentation from
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a single image can also be possible and should be further explored.
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Appendix

Figure 4.1: Groundtruth images and contours from the Berkeley Segmentation Dataset.
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Ethical Considerations

Checklist

Yes No
Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells? ✓

Does your project involve the use of human embryos? ✓

Does your project involve the use of human foetal tissues / cells? ✓

Section 2: HUMANS
Does your project involve human participants? ✓

Section 3: HUMAN CELLS / TISSUES
Does your project involve human cells or tissues? (Other than from “Human
Embryos/Foetuses” i.e. Section 1)?

✓

Section 4: PROTECTION OF PERSONAL DATA
Does your project involve personal data collection and/or processing? ✓

Does it involve the collection and/or processing of sensitive personal data (e.g.
health, sexual lifestyle, ethnicity, political opinion, religious or philosophical con-
viction)?

✓

Does it involve processing of genetic information? ✓

Does it involve tracking or observation of participants? It should be noted that this
issue is not limited to surveillance or localization data. It also applies to Wan data
such as IP address, MACs, cookies etc.

✓

Does your project involve further processing of previously collected personal data
(secondary use)? For example Does your project involve merging existing data
sets?

✓

Section 5: ANIMALS
Does your project involve animals? ✓

Section 6: DEVELOPING COUNTRIES
Does your project involve developing countries? ✓

If your project involves low and/or lower-middle income countries, are any benefit-
sharing actions planned?

✓

Could the situation in the country put the individuals taking part in the project at
risk?

✓

Section 7: ENVIRONMENTAL PROTECTION AND SAFETY
Does your project involve the use of elements that may cause harm to the environ-
ment, animals or plants?

✓

Does your project deal with endangered fauna and/or flora /protected areas? ✓

Does your project involve the use of elements that may cause harm to humans,
including project staff?

✓

Does your project involve other harmful materials or equipment, e.g. high-powered
laser systems?

✓
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Yes No
Section 8: DUAL USE
Does your project have the potential for military applications? ✓

Does your project have an exclusive civilian application focus? ✓

Will your project use or produce goods or information that will require export
licenses in accordance with legislation on dual use items?

✓

Does your project affect current standards in military ethics – e.g., global ban on
weapons of mass destruction, issues of proportionality, discrimination of combat-
ants and accountability in drone and autonomous robotics developments, incen-
diary or laser weapons?

✓

Section 9: MISUSE
Does your project have the potential for malevolent/criminal/terrorist abuse? ✓

Does your project involve information on/or the use of biological-, chemical-,
nuclear/radiological-security sensitive materials and explosives, and means of
their delivery?

✓

Does your project involve the development of technologies or the creation of infor-
mation that could have severe negative impacts on human rights standards (e.g.
privacy, stigmatization, discrimination), if misapplied?

✓

Does your project have the potential for terrorist or criminal abuse e.g. infrastruc-
tural vulnerability studies, cybersecurity related project?

✓

SECTION 10: LEGAL ISSUES
Will your project use or produce software for which there are copyright licensing
implications?

✓

Will your project use or produce goods or information for which there are data
protection, or other legal implications?

✓

SECTION 11: OTHER ETHICS ISSUES
Are there any other ethics issues that should be taken into consideration? ✓

Discussion

Dangers of Semantic Segmentation. It is true that semantic segmentation can have major

usage an impact in many different ethically controversial areas like face detection etc. How-

ever, the exact problem we are dealing with does not concern recognition, which reduces the

scope for applications of our system to such areas.

Dangers of image generation. Some elements of this work include image generation. There

are generally issues with generation concerning copyright. However in this work for gener-

ation we are not synthesizing images of quality similar to the target ones.

Datasets. The datasets used in this thesis, particularly the Berkeley Segmentation Dataset

[MFTM01] are internet open license images collected and labeled by humans. The datasets
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are for non-commercial use and have been cited with the appropriate references. This thesis

involves neither human, animal based data nor personal privacy data.

Concerns. If you have any additional concerns about the work, please contact the author.
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